Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)
These are Good articles, which meet a core set of high editorial standards.
Image 1
Power dividers (also power splitters and, when used in reverse, power combiners) and directional couplers are passive devices used mostly in the field of radio technology. They couple a defined amount of the electromagnetic power in a transmission line to a port enabling the signal to be used in another circuit. An essential feature of directional couplers is that they only couple power flowing in one direction. Power entering the output port is coupled to the isolated port but not to the coupled port. A directional coupler designed to split power equally between two ports is called a hybrid coupler.
Directional couplers are most frequently constructed from two coupled transmission lines set close enough together such that energy passing through one is coupled to the other. This technique is favoured at the microwave frequencies where transmission line designs are commonly used to implement many circuit elements. However, lumped component devices are also possible at lower frequencies, such as the audio frequencies encountered in telephony. Also at microwave frequencies, particularly the higher bands, waveguide designs can be used. Many of these waveguide couplers correspond to one of the conducting transmission line designs, but there are also types that are unique to waveguide. (Full article...)
This approach is especially useful in the design of mechanical filters—these use mechanical devices to implement an electrical function. However, the technique can be used to solve purely mechanical problems, and can also be extended into other, unrelated, energy domains. Nowadays, analysis by analogy is a standard design tool wherever more than one energy domain is involved. It has the major advantage that the entire system can be represented in a unified, coherent way. Electrical analogies are particularly used by transducer designers, by their nature they cross energy domains, and in control systems, whose sensors and actuators will typically be domain-crossing transducers. A given system being represented by an electrical analogy may conceivably have no electrical parts at all. For this reason domain-neutral terminology is preferred when developing network diagrams for control systems. (Full article...)
Waffle-iron filters are particularly suitable where both a wide passband, and a wide stopband free of spurious transmission modes, are required. They also have a high power-handling capability. Applications include suppressing the harmonic output of transmitters and the design of wide-band diplexers. They are also used in industrial microwave manufacturing processes to prevent the escape of microwave radiation from the microwave chamber. Filters with an analogous design are now appearing in photonics, but, due to the higher frequency, at a much smaller scale. This small size allows them to be incorporated into integrated circuits. (Full article...)
Image 4
Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line. They are used in conjunction with a microwave power source and usually, in keeping with their low-cost application, a low cost Schottky diode detector and VSWR meter rather than an expensive microwave power meter.
Slotted lines can measure standing waves, wavelength, and, with some calculation or plotting on Smith charts, a number of other parameters including reflection coefficient and electrical impedance. A precision variable attenuator is often incorporated in the test setup to improve accuracy. This is used to make level measurements, while the detector and VSWR meter are retained only to mark a reference point for the attenuator to be set to, thus eliminating entirely the detector and meter measurement errors. The parameter most commonly measured by a slotted line is SWR. This serves as a measure of the accuracy of the impedance match to the item under test. This is especially important for transmitting antennas and their feed lines; high standing wave ratio on a radio or TV antenna can distort the signal, increase transmission line loss and potentially damage components in the transmission path, possibly even the transmitter. (Full article...)
Image 5
m-derived filters or m-type filters are a type of electronic filter designed using the image method. They were invented by Otto Zobel in the early 1920s. This filter type was originally intended for use with telephone multiplexing and was an improvement on the existing constant k type filter. The main problem being addressed was the need to achieve a better match of the filter into the terminating impedances. In general, all filters designed by the image method fail to give an exact match, but the m-type filter is a big improvement with suitable choice of the parameter m. The m-type filter section has a further advantage in that there is a rapid transition from the cut-off frequency of the passband to a pole of attenuation just inside the stopband. Despite these advantages, there is a drawback with m-type filters; at frequencies past the pole of attenuation, the response starts to rise again, and m-types have poor stopband rejection. For this reason, filters designed using m-type sections are often designed as composite filters with a mixture of k-type and m-type sections and different values of m at different points to get the optimum performance from both types. (Full article...)
Image 6
The Leslie speaker is a combined amplifier and loudspeaker that projects the signal from an electric or electronic instrument and modifies the sound by rotating a baffle chamber ("drum") in front of the loudspeakers. A similar effect is provided by a rotating system of horns in front of the treble driver. It is most commonly associated with the Hammond organ, though it was later used for the electric guitar and other instruments. A typical Leslie speaker contains an amplifier, a treble horn and a bass speaker—though specific components depend upon the model. A musician controls the Leslie speaker by either an external switch or pedal that alternates between a slow and fast speed setting, known as "chorale" and "tremolo".
The speaker is named after its inventor, Donald Leslie, who began working in the late 1930s to get a speaker for a Hammond organ that better emulated a pipe or theatre organ, and discovered that baffles rotating along the axis of the speaker cone gave the best sound effect. Hammond was not interested in marketing or selling the speakers, so Leslie sold them himself as an add-on, targeting other organs as well as Hammond. Leslie made the first speaker in 1941. The sound of the organ being played through his speaker received national radio exposure across the US, and it became a commercial and critical success. It soon became an essential tool for most jazz organists. In 1965, Leslie sold his business to CBS who, in 1980, sold it to Hammond. Suzuki Musical Instrument Corporation subsequently acquired the Hammond and Leslie brands. (Full article...)
Image 7
The Yamaha NS-10 is a loudspeaker that became a standard nearfield studio monitor in the music industry among rock and pop recording engineers. Launched in 1978, the NS-10 started life as a bookshelf speaker destined for the domestic environment. It was poorly received but eventually became a valuable tool with which to mix rock recordings. The speaker has a characteristic white-coloured mid–bass drive unit.
Technically, it is known as a speaker that easily reveals poor quality in recordings. Recording engineers sought to dull its treble response by hanging tissue paper in front of it, resulting in what became known as the "tissue paper effect" – a type of comb filtering. The NS-10 has been used to monitor a large number of successful recordings by numerous artists, leading Gizmodo to refer to it as "the most important loudspeaker you never heard of". (Full article...)
Image 8
The Linn Isobarik, nicknamed "Bariks" or "Briks", is a loudspeaker designed and manufactured by Linn Products. The Isobarik is known for both its reproduction of low bass frequencies and being very demanding on amplifiers.
Launched in 1973, the Isobarik DMS, Linn's maiden and flagship loudspeaker was based on and named for the isobaric loading principle invented in the 1950s. The speaker exists also as the Isobarik PMS – destined for the professional market. Although discontinued in 1992, it remains popular among audiophiles. (Full article...)
Image 9
Sinclair Scientific calculator photographed c. 1974
The Sinclair Scientific was a 12-function, pocket-sized scientific calculator introduced in 1974, dramatically undercutting in price other calculators available at the time. The Sinclair Scientific Programmable, released a year later, was advertised as the first budget programmable calculator.
Significant modifications to the algorithms used meant that a chipset intended for a four-function calculator was able to process scientific functions, but at the cost of reduced speed and accuracy. Compared to contemporary scientific calculators, some functions were slow to execute, and others had limited accuracy or gave the wrong answer, but the cost of the Sinclair was a fraction of the cost of competing calculators. (Full article...)
Image 10
The Nakamichi Dragon is an audio cassette deck that was introduced by Nakamichi in 1982 and marketed until 1994. The Dragon was the first Nakamichi model with bidirectional replay capability and the world's first production tape recorder with an automatic azimuth correction system; this feature, which was invented by Philips engineers and improved by Niro Nakamichi, continuously adjusts the azimuth of the replay head to minimize apparent head skew and correctly reproduce the treble signal present on the tape. The system allows the correct reproduction of mechanically skewed cassettes and recordings made on misaligned decks. Apart from the Dragon, similar systems have only been used in the Nakamichi TD-1200 car cassette player and the Marantz SD-930 cassette deck.
At the time of its introduction, the Dragon had the lowest-ever wow and flutter and the highest-ever dynamic range, losing marginally to the former Nakamichi flagship the 1000ZXL in frequency response. Competing models by Sony, Studer, Tandberg and TEAC that were introduced later in the 1980s sometimes surpassed the Dragon in mechanical quality and feature set but none could deliver the same mix of sound quality, flexibility and technological advancement. The Dragon, despite inherent issues with long-term reliability, remained the highest point of compact cassette technology. (Full article...)
Image 11
Sinclair Executive Type 1
The Sinclair Executive was the world's first "slimline" pocket calculator, and the first to be produced by Clive Sinclair's company Sinclair Radionics. Introduced in 1972, the calculator was produced in at least two versions with different keyboard markings; a variant called the Sinclair Executive Memory was introduced in 1973.
Its small size was made possible by pulsing current to the Texas Instruments TMS1802 "calculator on a chip" integrated circuit, reducing the power consumption more than tenfold. The Executive was highly successful, making £1.8 million of profit for Sinclair and winning a Design Council Award for Electronics. (Full article...)
Filters are required to operate at many different frequencies, impedances and bandwidths. The utility of a prototype filter comes from the property that all these other filters can be derived from it by applying a scaling factor to the components of the prototype. The filter design need thus only be carried out once in full, with other filters being obtained by simply applying a scaling factor. (Full article...)
Image 13
The Sinclair Sovereign was a high-end calculator introduced by Clive Sinclair's company Sinclair Radionics in 1976. It was an attempt to escape from the unprofitable low end of the market, and one of the last calculators Sinclair produced. Made with a case of pressed steel that a variety of finishes, it cost between £30 and £60 at a time when other calculators could be purchased for under £5. A number of factors meant that the Sovereign was not a commercial success, including the cost, high import levies on components, competition from cheaper calculators manufactured abroad, and the development of more power-efficient designs using liquid-crystal displays. Though it came with a five-year guarantee, issues such as short battery life limited its usefulness. The company moved on to producing computers soon afterwards.
HDMI implements the ANSI/CTA-861 standard, which defines video formats and waveforms, transport of compressed and uncompressed LPCM audio, auxiliary data, and implementations of the VESA EDID. CEA-861 signals carried by HDMI are electrically compatible with the CEA-861 signals used by the Digital Visual Interface (DVI). No signal conversion is necessary, nor is there a loss of video quality when a DVI-to-HDMI adapter is used. The Consumer Electronics Control (CEC) capability allows HDMI devices to control each other when necessary and allows the user to operate multiple devices with one handheld remote control device. (Full article...)
It is distinguished from its predecessor by its larger and higher-resolution screen, higher storage options, a larger battery, and a video camera with stereo audio recording for a spatial effect on headphones and external speakers. While the picture and video resolutions of the camera stayed the same, its launching speed and shutter lag improved. (Full article...)
A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.
The components of a mechanical filter are all directly analogous to the various elements found in electrical circuits. The mechanical elements obey mathematical functions which are identical to their corresponding electrical elements. This makes it possible to apply electrical network analysis and filter design methods to mechanical filters. Electrical theory has developed a large library of mathematical forms that produce useful filter frequency responses and the mechanical filter designer is able to make direct use of these. It is only necessary to set the mechanical components to appropriate values to produce a filter with an identical response to the electrical counterpart. (Full article...)
... that in 2019, Chinese electronics company Xiaomi posted a video of their third-quarterly financial report featuring a parody of the anime song "Renai Circulation"?
... that a 1982 court case established that video games may qualify for multiple types of U.S. copyright protection?
Consumer showcase
Ibanez is a well known guitar manufacturer based in Nagoya, Aichi, Japan, started by Hoshino Gakki. Newer models have begun incorporating more modern elements into their design, such as radical body shapes, slimmer necks and flatter fingerboards (which allowed for faster playing), higher-output electronics and colorful finishes. This led to an increasing popularity with heavy metal musicians.