Resilience (materials science)

The area under the linear portion of a stress–strain curve is the resilience of the material.

In material science, resilience is the ability of a material to absorb energy when it is deformed elastically, and release that energy upon unloading. Proof resilience is defined as the maximum energy that can be absorbed up to the elastic limit, without creating a permanent distortion. The modulus of resilience is defined as the maximum energy that can be absorbed per unit volume without creating a permanent distortion. It can be calculated by integrating the stress–strain curve from zero to the elastic limit. In uniaxial tension, under the assumptions of linear elasticity,

where Ur is the modulus of resilience, σy is the yield strength, εy is the yield strain, and E is the Young's modulus.[1] This analysis is not valid for non-linear elastic materials like rubber, for which the approach of area under the curve until elastic limit must be used.

  1. ^ Campbell, Flake C. (2008). Elements of Metallurgy and Engineering Alloys. ASM International. p. 206. ISBN 9780871708670.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy