Rolling hairpin replication

Rolling hairpin replication (RHR) is a unidirectional, strand displacement form of DNA replication used by parvoviruses, a group of viruses that constitute the family Parvoviridae. Parvoviruses have linear, single-stranded DNA (ssDNA) genomes in which the coding portion of the genome is flanked by telomeres at each end that form hairpin loops. During RHR, these hairpin loops repeatedly unfold and refold to change the direction of DNA replication so that replication progresses in a continuous manner back and forth across the genome. RHR is initiated and terminated by an endonuclease encoded by parvoviruses that is variously called NS1 or Rep, and RHR is similar to rolling circle replication, which is used by ssDNA viruses that have circular genomes.

Before RHR begins, a host cell DNA polymerase converts the genome to a duplex form in which the coding portion is double-stranded and connected to the terminal hairpins. From there, messenger RNA (mRNA) that encodes the viral initiator protein is transcribed and translated to synthesize the protein. The initiator protein commences RHR by binding to and nicking the genome in a region adjacent to a hairpin called the origin and establishing a replication fork with its helicase activity. Nicking leads to the hairpin unfolding into a linear, extended form. The telomere is then replicated and both strands of the telomere refold back in on themselves to their original turn-around forms. This repositions the replication fork to switch templates to the other strand and move in the opposite direction. Upon reaching the other end, the same process of unfolding, replication, and refolding occurs.

Parvoviruses vary in whether both hairpins are the same or different. Homotelomeric parvoviruses such as adeno-associated viruses (AAV), i.e. those that have identical or similar telomeres, have both ends replicated by terminal resolution, the previously described process. Heterotelomeric parvoviruses such as minute virus of mice (MVM), i.e. those that have different telomeres, have one end replicated by terminal resolution and the other by an asymmetric process called junction resolution. During asymmetric junction resolution, the duplex extended form of the telomere reorganizes into a cruciform-shaped junction, and the correct orientation of the telomere is replicated off the lower arm of the cruciform. As a result of RHR, a replicative molecule that contains numerous copies of the genomes is synthesized. The initiator protein periodically excises progeny ssDNA genomes from this replicative concatemer.


From Wikipedia, the free encyclopedia ยท View on Wikipedia

Developed by Tubidy