Single-photon avalanche diode

Commercial single-photon avalanche diode module for optical photons

A single-photon avalanche diode (SPAD), also called Geiger-mode avalanche photodiode[1] (G-APD or GM-APD[2]) is a solid-state photodetector within the same family as photodiodes and avalanche photodiodes (APDs), while also being fundamentally linked with basic diode behaviours. As with photodiodes and APDs, a SPAD is based around a semi-conductor p-n junction that can be illuminated with ionizing radiation such as gamma, x-rays, beta and alpha particles along with a wide portion of the electromagnetic spectrum from ultraviolet (UV) through the visible wavelengths and into the infrared (IR).

In a photodiode, with a low reverse bias voltage, the leakage current changes linearly with absorption of photons, i.e. the liberation of current carriers (electrons and/or holes) due to the internal photoelectric effect. However, in a SPAD,[3][4] the reverse bias is so high that a phenomenon called impact ionisation occurs which is able to cause an avalanche current to develop. Simply, a photo-generated carrier is accelerated by the electric field in the device to a kinetic energy which is enough to overcome the ionisation energy of the bulk material, knocking electrons out of an atom. A large avalanche of current carriers grows exponentially and can be triggered from as few as a single photon-initiated carrier. A SPAD is able to detect single photons providing short duration trigger pulses that can be counted. However, they can also be used to obtain the time of arrival of the incident photon due to the high speed that the avalanche builds up and the device's low timing jitter.

The fundamental difference between SPADs and APDs or photodiodes, is that a SPAD is biased well above its reverse-bias breakdown voltage and has a structure that allows operation without damage or undue noise. While an APD is able to act as a linear amplifier, the level of impact ionisation and avalanche within the SPAD has prompted researchers to liken the device to a Geiger-counter in which output pulses indicate a trigger or "click" event. The diode bias region that gives rise to this "click" type behaviour is therefore called the "Geiger-mode" region.

As with photodiodes the wavelength region in which it is most sensitive is a product of its material properties, in particular the energy bandgap within the semiconductor. Many materials including silicon, germanium and other III-V elements have been used to fabricate SPADs for the large variety of applications that now utilise the run-away avalanche process. There is much research in this topic with activity implementing SPAD-based systems in CMOS fabrication technologies,[5] and investigation and use of III-V material combinations[6] for single-photon detection at dedicated wavelengths.

  1. ^ Acerbi F, Gundacker S (2019). "Understanding and simulating SiPMs". Nucl. Instrum. Methods Phys. Res. A. 926: 16–35. Bibcode:2019NIMPA.926...16A. doi:10.1016/j.nima.2018.11.118. eISSN 1872-9576. ISSN 0168-9002.
  2. ^ Gatt P, Johnson S, Nichols T (2009). "Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics". Applied Optics. 48 (17): 3261–3276. Bibcode:2009ApOpt..48.3261G. doi:10.1364/AO.48.003261. ISSN 2155-3165. PMID 19516383.
  3. ^ Cite error: The named reference Cova96 was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference :5 was invoked but never defined (see the help page).
  6. ^ J. Zhang, M. Itzler, H. Zbinden and J. Pan (2015). "Advances in InGaAs/InP single-photon detector systems for quantum communication". Light: Science & Applications. 4 (5): e286. arXiv:1501.06261. Bibcode:2015LSA.....4E.286Z. doi:10.1038/lsa.2015.59. S2CID 6865451.{{cite journal}}: CS1 maint: multiple names: authors list (link)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy