Somatic embryogenesis

Switchgrass somatic embryos

Somatic embryogenesis is an artificial process in which a plant or embryo is derived from a single somatic cell.[1] Somatic embryos are formed from plant cells that are not normally involved in the development of embryos, i.e. ordinary plant tissue. No endosperm or seed coat is formed around a somatic embryo.

Cells derived from competent source tissue are cultured to form an undifferentiated mass of cells called a callus. Plant growth regulators in the tissue culture medium can be manipulated to induce callus formation and subsequently changed to induce embryos to form the callus. The ratio of different plant growth regulators required to induce callus or embryo formation varies with the type of plant.[2] Somatic embryos are mainly produced in vitro and for laboratory purposes, using either solid or liquid nutrient media which contain plant growth regulators (PGR’s). The main PGRs used are auxins but can contain cytokinin in a smaller amount.[3] Shoots and roots are monopolar while somatic embryos are bipolar, allowing them to form a whole plant without culturing on multiple media types. Somatic embryogenesis has served as a model to understand the physiological and biochemical events that occur during plant developmental processes as well as a component to biotechnological advancement.[4] The first documentation of somatic embryogenesis was by Steward et al. in 1958 and Reinert in 1959 with carrot cell suspension cultures.[5][6]

  1. ^ Sahoo, Jyoti Prakash (2018-06-11). "Organogenesis and somatic embryogenesis". doi:10.13140/rg.2.2.26278.57928. {{cite journal}}: Cite journal requires |journal= (help)
  2. ^ http://www.accessexcellence.org/LC/ST/st2bgplant.html Plant Tissue Culture
  3. ^ E.F. George et al. (eds.), Plant Propagation by Tissue Culture 3rd Edition, 335-354.
  4. ^ Quiroz-Figueroa, F. R., Rojas-Herrera, R., Galaz-Avalos, R. M., and Loyola- Vargas, V. M. 2006. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss. Org. Cult. 86: 285–301.
  5. ^ Steward, F.C., Mapes, M.O., and Smlth, J. (1958). Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am. J. Bot. 45, 693-703.
  6. ^ Reinert J (1959) Uber die kontrolle der morphogenese und die induktion von adventivembryonen an gew- ebekulturen aus karotten. Planta 53:318–333

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in