Spatial cognition

In cognitive psychology, spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals, including humans, behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines (such as cognitive psychology, neuroscience, artificial intelligence, geographic information science, cartography, etc.) work together to understand spatial cognition in different species, especially in humans. Thereby, spatial cognition studies also have helped to link cognitive psychology and neuroscience. Scientists in both fields work together to figure out what role spatial cognition plays in the brain as well as to determine the surrounding neurobiological infrastructure.

In humans, spatial cognition is closely related to how people talk about their environment, find their way in new surroundings, and plan routes. Thus a wide range of studies is based on participants reports, performance measures and similar, for example in order to determine cognitive reference frames that allow subjects to perform. In this context the implementation of virtual reality becomes more and more widespread among researchers, since it offers the opportunity to confront participants with unknown environments in a highly controlled manner.[1] Spatial cognition can be seen from a psychological point of view, meaning that people's behaviour within that space is key. When people behave in space, they use cognitive maps, the most evolved form of spatial cognition. When using cognitive maps, information about landmarks and the routes between landmarks are stored and used.[2] This knowledge can be built from various sources; from a tightly coordinated vision and locomotion (movement), but also from map symbols, verbal descriptions, and computer-based pointing systems. According to Montello, space is implicitly referring to a person's body and their associated actions. He mentions different kinds of space; figural space which is a space smaller than the body, vista space which the space is more extended than the human body, environmental space which is learned by locomotion, and geographical space which is the biggest space and can only be learned through cartographic representation. However, since space is represented in the human brain, this can also lead to distortions. When perceiving space and distance, a distortion can occur. Distances are perceived differently on whether they are considered between a given location and a location that has a high cognitive saliency, meaning that it stands out. Different perceived locations and distances can have a "reference point", which are better known than others, more frequently visited and more visible.[3] There are other kinds of distortions as well. Furthermore, there the distortion in distance estimation and the distortion in angle alignment. Distortion in angle alignment means that your personal north will be viewed as "the north". The map is mentally represented according to the orientation of the personal point of view of learning. Since perceived distortion is "subjective" and not necessarily correlated with "objective distance", distortions can happen in this phenomenon too. There can be an overestimation in downtown routes, routes with turns, curved routes and borders or obstacles.

  1. ^ Clay, V., König, P. & König, S. U. (2019) (2019). "Eye tracking in virtual reality". Journal of Eye Movement Research. 12(1):3 (1): 1–18. doi:10.16910/jemr.12.1.3. PMC 7903250. PMID 33828721 – via DOI: 10.16910/jemr.12.1.3.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  2. ^ Bohren, B.B.; Siegel, P.B. (1975). "Light Effects During Incubation on Lines of White Leghorns Selected for Fast and Slow Hatching". Poultry Science. 54 (5): 1372–1374. doi:10.3382/ps.0541372. PMID 1187505.
  3. ^ Sadalla, Edward K.; Burroughs, W. Jeffrey; Staplin, Lorin J. (1980). "Reference points in spatial cognition". Journal of Experimental Psychology: Human Learning and Memory. 6 (5): 516–528. doi:10.1037/0278-7393.6.5.516. PMID 7430967.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in