Star-shaped polymer

Representations of how star shaped polymers are typically shown

In polymer science, star-shaped polymers are the simplest class of branched polymers with a general structure consisting of several (at least three) linear chains connected to a central core.[1] The core, or the center, of the polymer can be an atom, molecule, or macromolecule; the chains, or "arms", consist of variable-length organic chains. Star-shaped polymers in which the arms are all equivalent in length and structure are considered homogeneous, and ones with variable lengths and structures are considered heterogeneous.

Star-shaped polymers' unique shape and associated properties,[2][3][4] such as their compact structure, high arm density, efficient synthetic routes, and unique rheological properties make them promising tools for use in drug delivery,[5] other biomedical applications,[6] thermoplastics,[7] and nanoelectronics[8] among other applications.[1]

  1. ^ a b N. Hadjichristidis; H. Iatrou; M. Pitsikalis; P. Driva; G. Sakellariou; M. Chatzichristidi (2012). "Polymers with Star-Related Structures". Polymers with Star-Related Structures: Synthesis, Properties, and Applications, In Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier. pp. 29–111. doi:10.1016/B978-0-444-53349-4.00161-8. ISBN 9780080878621.
  2. ^ Alexandros Chremos; Jack F. Douglas (2015). "When does a branched polymer become a particle?". J. Chem. Phys. 143 (11): 111104. doi:10.1063/1.4931483. PMID 26395679.
  3. ^ Alexandros Chremos; E. Glynos; P. F. Green (2015). "Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature". Journal of Chemical Physics. 142 (4): 044901. Bibcode:2015JChPh.142d4901C. doi:10.1063/1.4906085. PMID 25638003.
  4. ^ Cite error: The named reference art2 was invoked but never defined (see the help page).
  5. ^ Zhu, Weipu; Ling, Jun; Shen, Zhiquan (2 May 2006). "Synthesis and Characterization of Amphiphilic Star-Shaped Polymers With Calix[6]arene Cores". Macromolecular Chemistry and Physics. 207 (9): 844–849. doi:10.1002/macp.200600008.
  6. ^ Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X. (17 April 2011). "Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair". Nature Materials. 10 (5): 398–406. Bibcode:2011NatMa..10..398L. doi:10.1038/NMAT2999. PMC 3080435. PMID 21499313.
  7. ^ Knoll, Konrad; Nießner, Norbert (July 1998). "Styrolux+ and styroflex+ - from transparent high impact polystyrene to new thermoplastic elastomers: Syntheses, applications and blends with other styrene based polymers". Macromolecular Symposia. 132 (1): 231–243. doi:10.1002/masy.19981320122.
  8. ^ Drew C. Forman ; Florian Wieberger ; Andre Gröschel ; Axel H. E. Müller ; Hans-Werner Schmidt ; Christopher K. Ober; Comparison of star and linear ArF resists. Proc. SPIE 7639, Advances in Resist Materials and Processing Technology XXVII, 76390P (March 25, 2010); doi:10.1117/12.848344

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy