Statistical learning theory

Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis.[1][2][3] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data. Statistical learning theory has led to successful applications in fields such as computer vision, speech recognition, and bioinformatics.

  1. ^ Vapnik, Vladimir N. (1995). The Nature of Statistical Learning Theory. New York: Springer. ISBN 978-1-475-72440-0.
  2. ^ Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. New York, NY: Springer. ISBN 978-0-387-84857-0.
  3. ^ Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet (2012). Foundations of Machine Learning. US, Massachusetts: MIT Press. ISBN 9780262018258.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in