Stochastic cellular automaton

Stochastic cellular automata or probabilistic cellular automata (PCA) or random cellular automata or locally interacting Markov chains[1][2] are an important extension of cellular automaton. Cellular automata are a discrete-time dynamical system of interacting entities, whose state is discrete.

The state of the collection of entities is updated at each discrete time according to some simple homogeneous rule. All entities' states are updated in parallel or synchronously. Stochastic cellular automata are CA whose updating rule is a stochastic one, which means the new entities' states are chosen according to some probability distributions. It is a discrete-time random dynamical system. From the spatial interaction between the entities, despite the simplicity of the updating rules, complex behaviour may emerge like self-organization. As mathematical object, it may be considered in the framework of stochastic processes as an interacting particle system in discrete-time. See [3] for a more detailed introduction.

  1. ^ Toom, A. L. (1978), Locally Interacting Systems and their Application in Biology: Proceedings of the School-Seminar on Markov Interaction Processes in Biology, held in Pushchino, March 1976, Lecture Notes in Mathematics, vol. 653, Springer-Verlag, Berlin-New York, ISBN 978-3-540-08450-1, MR 0479791
  2. ^ R. L. Dobrushin; V. I. Kri︠u︡kov; A. L. Toom (1978). Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis. Manchester University Press. ISBN 9780719022067.
  3. ^ Fernandez, R.; Louis, P.-Y.; Nardi, F. R. (2018). "Chapter 1: Overview: PCA Models and Issues". In Louis, P.-Y.; Nardi, F. R. (eds.). Probabilistic Cellular Automata. Springer. doi:10.1007/978-3-319-65558-1_1. ISBN 9783319655581. S2CID 64938352.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy