Superconducting computing

Superconducting logic refers to a class of logic circuits or logic gates that use the unique properties of superconductors, including zero-resistance wires, ultrafast Josephson junction switches, and quantization of magnetic flux (fluxoid). As of 2023, superconducting computing is a form of cryogenic computing, as superconductive electronic circuits require cooling to cryogenic temperatures for operation, typically below 10 kelvin. Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing.

Superconducting digital logic circuits use single flux quanta (SFQ), also known as magnetic flux quanta, to encode, process, and transport data. SFQ circuits are made up of active Josephson junctions and passive elements such as inductors, resistors, transformers, and transmission lines. Whereas voltages and capacitors are important in semiconductor logic circuits such as CMOS, currents and inductors are most important in SFQ logic circuits. Power can be supplied by either direct current or alternating current, depending on the SFQ logic family.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy