Tip-enhanced Raman spectroscopy

Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS)[1] that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible via TERS,[2] with routine demonstrations of nanometer spatial resolution under ambient laboratory conditions,[3] or better[4] at ultralow temperatures and high pressure.

The maximum resolution achievable using an optical microscope, including Raman microscopes, is limited by the Abbe limit, which is approximately half the wavelength of the incident light. Furthermore, with SERS spectroscopy the signal obtained is the sum of a relatively large number of molecules. TERS overcomes these limitations as the Raman spectrum obtained originates primarily from the molecules within a few tens of nanometers of the tip.

Although the antennas' electric near-field distributions are commonly understood to determine the spatial resolution, recent experiments showing subnanometer-resolved optical images put this understanding into question.[2] This is because such images enter a regime in which classical electrodynamical descriptions might no longer be applicable and quantum plasmonic[5] and atomistic[6] effects could become relevant.

  1. ^ Sonntag, Matthew D.; Pozzi, Eric A.; Jiang, Nan; Hersam, Mark C.; Van Duyne, Richard P. (18 September 2014). "Recent Advances in Tip-Enhanced Raman Spectroscopy". The Journal of Physical Chemistry Letters. 5 (18): 3125–3130. doi:10.1021/jz5015746. PMID 26276323.
  2. ^ a b Shi, Xian; Coca-López, Nicolás; Janik, Julia; Hartschuh, Achim (2017-04-12). "Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas". Chemical Reviews. 117 (7): 4945–4960. doi:10.1021/acs.chemrev.6b00640. ISSN 0009-2665.
  3. ^ Chen, Chi; Hayazawa, Norihiko; Kawata, Satoshi (2014-02-12). "A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient". Nature Communications. 5 (1): 3312. doi:10.1038/ncomms4312. ISSN 2041-1723. PMID 24518208.
  4. ^ Lee, Joonhee; Crampton, Kevin T.; Tallarida, Nicholas; Apkarian, V. Ara (April 2019). "Visualizing vibrational normal modes of a single molecule with atomically confined light". Nature. 568 (7750): 78–82. doi:10.1038/s41586-019-1059-9. ISSN 1476-4687. S2CID 92998248.
  5. ^ Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B. (2016-06-03). "Quantum mechanical effects in plasmonic structures with subnanometre gaps". Nature Communications. 7 (1). doi:10.1038/ncomms11495. ISSN 2041-1723. PMC 4895716.
  6. ^ Barbry, M.; Koval, P.; Marchesin, F.; Esteban, R.; Borisov, A. G.; Aizpurua, J.; Sánchez-Portal, D. (2015-05-04). "Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics". Nano Letters. 15 (5): 3410–3419. doi:10.1021/acs.nanolett.5b00759. hdl:10261/136309. ISSN 1530-6984.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy