Konveksa aro

Konveksa aro.
Nekonveksa (konkava) aro.

En eŭklida spaco, objekto estas konveksa se por ĉiu paro de punktoj en la objekto, ankaŭ ĉiu punkto en la rekta segmento kiu kunigas la unuaj du punktojn estas en la objekto. Objekto kiu ne estas konveksa estas nomata kiel ne konveksakonkava.

Funkcio (blua) estas konveksa se kaj nur se la regiono pli supre ĝia grafikaĵo (verda) estas konveksa aro.

Estu C aro en reelakompleksa vektora spaco. C estas konveksa se por ĉiuj x kaj y en C kaj ĉiuj t en la intervalo [0,1], la punkto

(1 − t) x + t y

estas en C. En aliaj vortoj, ĉiu punkto sur la streko konektanta punktojn x kaj y estas en C. Ĉi tio implicas ke konveksa aro estas koneksa.

Aro C estas absolute konveksa se ĝi estas konveksa kaj ekvilibra.

La konveksaj subaroj de R (la aro de reelaj nombroj) estas simple intervaloj de R.

Ekzemploj de konveksaj subaroj de eŭklida 2-spaco estas triangulo kaj la 2-dimensia unuobla pilko. Ekzemploj de nekonveksaj aroj subaroj de eŭklida 3-spaco estas steloj.

Ekzemploj de konveksaj subaroj de eŭklida 3-spaco estas la arĥimedaj solidoj, la platonaj solidoj kaj la 3-dimensia unuobla pilko. Ekzemploj de nekonveksaj aroj subaroj de eŭklida 3-spaco estas la pluredroj de Keplero-Poinsot.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in