La artikolo estas parto de serio pri grafeoteorio.
|
Plej gravaj terminoj Elektitaj klasoj de grafeoj Grafeaj algoritmoj Problemoj prezentataj kiel grafeaj Aliaj Reprezentado de grafeo Glosaro de grafeoteorio |
En grafeoteorio, regula grafeo estas grafeo tia, ke ĉiu vertico havas la saman nombron de najbaroj; t.e. ĉiu vertico havas la saman gradon. En direkta grafeo, ĉiu vertico devas havi la saman engradon kaj elgradon.[1] Regula grafeo kun kies verticoj havas gradon k nomiĝas k‑regula grafeo aŭ regula grafeo kun grado k. Parenteze, laŭ la manprema lemo, regula grafeo kun nepara grado havas paran nombron da verticoj.
Regula grafeo kun grado ĝis 2 estas facile por klasi: 0-regula grafeo estas seneĝa; 1-regula grafeo disajn eĝojn; 2-regula grafeo havas malkoneksa ciklojn kaj malfiniajn ĉenojn.
Plena grafeo estas regulega por
Teoremo de Nash-Williams asertas ke ĉiu k‑regula grafeo kun 2k + 1 verticoj havas Hamiltonian ciklon.