Anillo conmutativo

Estructura algebraica con dos leyes de composición internas.

En teoría de anillos (una rama del álgebra abstracta), un anillo conmutativo es un anillo (R, +, ·) en el que la operación de multiplicación · es conmutativa; es decir, si para cualquiera a, bR, a·b = b·a.

Si adicionalmente el anillo tiene un elemento unitario 1 tal que 1a = a = a1 para todo a, entonces el anillo se denomina Anillo unitario conmutativo.

La rama de la teoría de anillos que estudia los anillos conmutativos se denomina álgebra conmutativa.

Complementariamente, el álgebra no conmutativa es el estudio de las propiedades de los anillos que no son específicas de los anillos conmutativos. Esta distinción resulta del alto número de propiedades fundamentales de los anillos conmutativos que no se extienden a los anillos no conmutativos.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in