Historia de la Tierra

La canica azul, la más famosa fotografía del planeta Tierra hecha en 1972 durante la misión Apolo 17.

La historia de la Tierra se refiere al desarrollo del planeta Tierra y cubre alrededor de 4500 millones de años (4 567 000 000 años) —aproximadamente un tercio de la edad del universo, de los 13 700 Ma estimados desde el Big Bang[1]​—, desde su formación hasta la época actual.[2]​ Está dividida en cuatro eones —la mayor división cronológica—, siendo los tres primeros los que definen el Precámbrico:

  1. el Hadeano, que duró casi 500 Ma y que no dejó casi ninguna roca en su lugar, excepto fragmentos en rocas eruptivas posteriores, y es sobre todo conocido a través de la modelización del sistema solar y el análisis comparativo de las composiciones isotópicas de los diferentes cuerpos celestes;
  2. el Arcaico, que duró 1500 Ma, marcado a la vez por la aparición de las primeras cortezas continentales y por el origen de la vida que creó la biosfera y conocido por el análisis de las rocas que ha dejado, de su edad y de las condiciones de su formación;
  3. el Proterozoico, que duró 2000 Ma, marcado por la aparición masiva del oxígeno en la atmósfera, que reemplazó a la atmósfera primitiva de dióxido de carbono, y conocido también a través de las rocas entonces formadas, en un ambiente hasta el presente generalmente oxidante;
  4. el Fanerozoico, literalmente el de los «animales visibles», de los organismos multicelulares: además de los análisis de rocas, se conoce por los fósiles que han dejado esos organismos animales y vegetales en sus diferentes estratos geológicos. Es la edad de la vida tal como se conoce hoy y se divide en tres eras: el Paleozoico, que no comenzó hasta hace 540 Ma, una era de artrópodos, peces y la primera vida en la tierra; el Mesozoico, que abarcó el ascenso, el reinado y la extinción climática de los dinosaurios no aviares; y el Cenozoico, que vio el surgimiento de los mamíferos. Los seres humanos reconocibles surgieron hace como mucho 2 Ma, un período extremadamente pequeño en la escala geológica.

La Tierra se formó por acreción de la nebulosa solar.[3][4][5]​ La desgasificación volcánica probablemente creó la atmósfera primordial y luego el océano, pero la atmósfera primitiva casi no contenía oxígeno. Gran parte de la Tierra se fundió debido a las frecuentes colisiones con otros cuerpos que llevaron a un vulcanismo extremo. Mientras la Tierra estaba en su etapa más temprana (Tierra primordial), se cree que una colisión de impacto gigante con un cuerpo del tamaño de un planeta llamado Tea habría formado la Luna. Con el tiempo, la Tierra se enfrió, entrañando la formación de una corteza sólida y permitiendo que existiera el agua líquida en la superficie.

La evidencia indiscutible más antigua de vida en la Tierra data de hace al menos 3500 Ma,[6][7][8]​ durante la Era Eoarcaica, después de que la corteza geológica comenzara a solidificarse a partir del material fundido anterior del eón Hadeano. Hay fósiles de esteras microbianas como los estromatolitos que se encuentran en areniscas de 3480 Ma descubiertos en Australia Occidental.[9][10][11]​ Otra evidencia física temprana de una sustancia biogénica es el grafito en rocas metasedimentarias de 3700 Ma descubiertas en el suroeste de Groenlandia,[12]​ así como los «restos de vida biótica» encontrados en rocas de 4100 Ma en Australia Occidental.[13][14]​ Según S. Blair Hedges, de la Universidad del Temple, «si la vida surgiese relativamente rápido en la Tierra, entonces podría ser común en el universo».[13]

Los organismos fotosintéticos aparecieron hace entre 3200 y 2400 Ma y comenzaron a enriquecer la atmósfera con oxígeno. La vida permaneció mayormente pequeña y microscópica hasta hace unos 580 Ma, cuando surgió la vida multicelular compleja, se desarrolló con el tiempo y culminó en la explosión cámbrica hace unos 541 Ma. Esta repentina diversificación de formas de vida produjo la mayor parte de los principales filos conocidos hoy en día, y dividió el eón Proterozoico del período Cámbrico, ya en la era Paleozoica. Se estima que el 99% de todas las especies que alguna vez vivieron en la Tierra, más de cinco mil millones,[15]​ se han extinguido.[16][17]​ Las estimaciones sobre el número de especies actuales de la Tierra varían entre 10 millones y 14 millones,[18]​ de las cuales están documentadas alrededor de 1,5 millones.[19]​ Algunos estudios establecen que aún permanecen sin descripción alrededor del 86% de las especies terrestres y el 91% de las especies marinas.[20]​ Sin embargo, recientemente se ha afirmado que 1 billón de especies viven actualmente en la Tierra, y de ellas solo una milésima parte del 1% están descriptas.[21]

La corteza terrestre ha cambiado constantemente desde su formación, al igual que la vida desde su primera aparición. Las especies continúan evolucionando, adoptando nuevas formas, dividiéndose en especies hijas o extinguiéndose frente a entornos físicos en constante cambio. El proceso de la tectónica de placas continúa dando forma a los continentes y océanos de la Tierra y la vida que albergan. La actividad humana es ahora una fuerza dominante que afecta al cambio global, alterando la biosfera, la superficie de la Tierra, la hidrosfera y la atmósfera con la pérdida de tierras silvestres, la sobreexplotación de los océanos, la producción de gases de efecto invernadero, la degradación de la capa de ozono y una degradación general de la calidad del suelo, el aire y el agua.[22]

Casi todas las ramas de las ciencias naturales han contribuido a la comprensión de los principales eventos del pasado de la Tierra, grandes cambios geológicos —diferenciación en capas, creación de corteza continental, movilización de la litosfera por la tectónica de placas—, reconfiguración de equilibrios químicos, como la Gran Oxidación, intensos cambios climáticos y episodios catastróficos; separados por largos períodos de estabilidad, durante los cuales las retroalimentaciones, entre la biosfera, la atmósfera, la hidrosfera y la litosfera estabilizaron las condiciones dando lugar a la aparición de la vida y a su evolución y diversificación, con varios episodios de extinción masiva, como las que se produjeron durante el (Devónico o el Pérmico-Triásico, entre otras.[23]

  1. «"Una nueva imagen del comienzo del universo muestra la época de las primeras estrellas, la edad del cosmos y más cosas"». NASA (publicado el 26 de marzo de 2006). 11 de febrero de 2003. Archivado desde el original el 2 de enero de 2010. Consultado el 25 de noviembre de 2006. 
  2. Sarah Kaplan (6 de marzo de 2017). «Dear Science: How do we know how old the Earth is?» (en inglés). The Washintong Post. 
  3. «Age of the Earth» (en inglés). Servicio Geológico de los Estados Unidos. 1997. Archivado desde el original el 23 de diciembre de 2005. 
  4. Dalrymple, G. Brent (2001). «The age of the Earth in the twentieth century: a problem (mostly) solved». Special Publications, Geological Society of London (en inglés) 190 (1): 205-221. Bibcode:2001GSLSP.190..205D. S2CID 130092094. doi:10.1144/GSL.SP.2001.190.01.14. 
  5. Manhesa, Gérard; Allègre, Claude J.; Dupréa, Bernard; Hamelin, Bruno (1980). «Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics». Earth and Planetary Science Letters (en inglés) 47 (3): 370-382. Bibcode:1980E&PSL..47..370M. doi:10.1016/0012-821X(80)90024-2. 
  6. Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (5 de octubre de 2007). «Evidence of Archean life: Stromatolites and microfossils». Precambrian Research (en inglés) (Amsterdam: Elsevier) 158 (3–4): 141-155. Bibcode:2007PreR..158..141S. ISSN 0301-9268. doi:10.1016/j.precamres.2007.04.009. 
  7. Schopf, J. William (29 de junio de 2006). «Fossil evidence of Archaean life». Philosophical Transactions of the Royal Society B (Londres: Royal Society) 361 (1470): 869-885. ISSN 0962-8436. PMC 1578735. PMID 16754604. doi:10.1098/rstb.2006.1834. 
  8. Raven y Johnson, 2002, p. 68
  9. Borenstein, Seth (13 de noviembre de 2013). «Oldest fossil found: Meet your microbial mom». Washington Examiner (en inglés). Consultado el 21 de junio de 2021. 
  10. Pearlman, Jonathan (13 de noviembre de 2013). «Oldest signs of life on Earth found». The Daily Telegraph. Londres. Archivado desde el original el 6 de marzo de 2015. 
  11. Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (1 de diciembre de 2013). «Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia». Astrobiology (en inglés) (New Rochelle, NY: Mary Ann Liebert, Inc.) 13 (12): 1103-1124. Bibcode:2013AsBio..13.1103N. ISSN 1531-1074. PMC 3870916. PMID 24205812. doi:10.1089/ast.2013.1030. 
  12. Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; Nagase, Toshiro; Rosing, Minik T. (Enero de 2014). «Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks». Nature Geoscience (en inglés) (Londres: Nature Publishing Group) 7 (1): 25-28. Bibcode:2014NatGe...7...25O. ISSN 1752-0894. doi:10.1038/ngeo2025. 
  13. a b Borenstein, Seth (19 de octubre de 2015). «Hints of life on what was thought to be desolate early Earth». Excite (en inglés). Yonkers, NY: Mindspark Interactive Network. Archivado desde el original el 23 Ode octubre de 2015. 
  14. Bell, Elizabeth A.; Boehnike, Patrick; Harrison, T. Mark; Mao, Wendy L. (19 de octubre de 2015). «Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon». Proceedings of the National Academy of Sciences U.S.A. (en inglés) (Washington, DC: National Academy of Sciences) 112 (47): 14518-14521. Bibcode:2015PNAS..11214518B. ISSN 1091-6490. PMC 4664351. PMID 26483481. doi:10.1073/pnas.1517557112. 
  15. Michael L. Kinney (2012). «7 - How do rare species avoid extinction? A paleontological view». En Kunin, W.E.; Gaston, Kevin, eds. The Biology of Rarity: Causes and consequences of rare–common differences (en inglés). Springer Science & Business Media. ISBN 978-0-412-63380-5. 
  16. Rodríguez Luna, Ernesto; Shedden González, Aralisa (Septiembre-Diciembre de 2009). «El concepto de especie y la explicación de la extinción». La Ciencia y el Hombre - REVISTA DE DIVULGACIÓN CIENTÍFICA Y TECNOLÓGICA DE LA UNIVERSIDAD VERACRUZANA (Universidad Veracruzana) XXII (3). 
  17. Novacek, Michael J. (8 de noviembre de 2014). «Prehistory's Brilliant Future». New York Times (en inglés). Archivado desde el original el 14 de noviembre de 2014. 
  18. G. Miller; Scott Spoolman (2012). Environmental Science – Biodiversity Is a Crucial Part of the Earth's Natural Capital (en inglés). Cengage Learning. p. 62. ISBN 978-1-133-70787-5. 
  19. Geoffrey Giller (8 de abril de 2014). «Are We Any Closer to Knowing How Many Species There Are on Earth?». Scientific American (en inglés). 
  20. Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.; Worm, B. (23 de agosto de 2011). «How many species are there on Earth and in the ocean?». PLOS Biology (en inglés) 9 (8): e1001127. PMC 3160336. PMID 21886479. doi:10.1371/journal.pbio.1001127. 
  21. «Researchers find that Earth may be home to 1 trillion species». National Science Foundation (en inglés). 2 de mayo de 2016. 
  22. Carlos M. Duarte (coord.); Sergio Alonso; Gerardo Benito; Jordi Dachs; Carlos Montes; Mercedes Pardo; Aida F. Ríos; Rafel Simó et al. (2006). Cambio global - Impacto de la actividad humanasobre el sistema Tierra. Madrid: CSIC - Consejo Superior de Investigaciones Científicas. ISBN 978-84-00-08452-3. 
  23. «Extinciones masivas». Biodiversidad mexicana. CONABIO - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. 9 de octubre de 2020. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy