En análisis complejo, una función logaritmo complejo es una "función inversa" de la función exponencial compleja, de la misma manera que el logaritmo natural ln x es la función inversa de la función exponencial ex. Entonces, un logaritmo de z es un número complejo w tal que ew = z.[1] La notación para tal w es log z. Pero debido a que todo número complejo z distinto de cero tiene infinitos logaritmos distintos,[1] hay que tener cuidado para darle a esta notación un significado no ambiguo.
Si z = reiθ con r > 0 (forma polar), entonces w = ln r + iθ es un logaritmo de z; sumándole múltiplos enteros de 2πi se obtienen todos los demás.[1]