En matemáticas, el producto exterior de vectores (o producto de cuña, por el símbolo utilizado para denotarlo) es una construcción algebraica utilizada en geometría para estudiar áreas, volúmenes y sus análogos de dimensiones superiores. El producto exterior de dos vectores y , denotado por , se llama bivector y pertenece a un espacio llamado cuadrado exterior, un espacio vectorial que es distinto del espacio original de los vectores. La magnitud[3] de se puede interpretar como el área del paralelogramo con lados y , que en tres dimensiones también se puede calcular usando el producto vectorial de los dos vectores. De manera más general, todas las superficies planas paralelas con la misma orientación y área tienen el mismo bivector como medida de su área orientada. Al igual que el producto cruzado, el producto exterior es anticonmutativo, lo que significa que para todos los vectores y , pero, a diferencia del producto cruzado, el producto exterior es asociativo.
Cuando se considera de esta manera, el producto exterior de dos vectores se denomina de 2-hojas. De manera más general, el producto exterior de cualquier número k de vectores se puede definir como una k-hoja. Pertenece a un espacio conocido como la k-ésima potencia exterior. La magnitud de la k-hoja resultante es el volumen de la dimensión k de un paralelotopo cuyas aristas son los vectores dados, así como la magnitud del producto mixto de los vectores en tres dimensiones da el volumen del paralelepípedo generado por esos vectores.
El álgebra exterior o álgebra de Grassmann, denominada así en referencia a Hermann Grassmann,[4] es el sistema algebraico cuyo producto es el producto exterior. El álgebra exterior proporciona un entorno algebraico en el que manejar cuestiones geométricas. Por ejemplo, las hojas tienen una interpretación geométrica concreta y los objetos en el álgebra exterior pueden manipularse de acuerdo con un conjunto de reglas inequívocas. El álgebra exterior contiene objetos que no son solo k-hojas, sino sumas de k-hojas; tal suma se llama k-vector.[5] Las k-hojas, debido a que son productos simples de vectores, se denominan elementos simples del álgebra. El rango de cualquier vector k se define como el número más pequeño de elementos simples de los que es una suma. El producto exterior se extiende al álgebra exterior completa, por lo que tiene sentido multiplicar dos elementos cualesquiera del álgebra. Equipada con este producto, el álgebra exterior es un álgebra asociativa, lo que significa que para cualquier elemento . Los k vectores tienen grado k, lo que significa que son sumas de productos de k vectores. Cuando se multiplican elementos de diferentes grados, los grados se suman como en una multiplicación de polinomios. Esto significa que el álgebra exterior es un álgebra graduada.
La definición del álgebra exterior tiene sentido para espacios no solo de vectores geométricos, sino de otros objetos similares a vectores como campos vectoriales o funciones. En general, el álgebra exterior se puede definir para módulos sobre un anillo conmutativo, y para otras estructuras de interés en álgebra abstracta. Es una de estas construcciones más generales donde el álgebra exterior encuentra una de sus aplicaciones más importantes, donde aparece como el álgebra de formas diferenciales que es fundamental en áreas que usan la geometría diferencial. El álgebra exterior también tiene muchas propiedades algebraicas que la convierten en una herramienta conveniente en el álgebra misma. La asociación del álgebra exterior a un espacio vectorial es un tipo de funtor en espacios vectoriales, lo que significa que es compatible de cierta manera con la aplicación lineal de espacios vectoriales. El álgebra exterior es un ejemplo de biálgebra, lo que significa que su espacio dual también posee un producto, y este producto dual es compatible con el producto exterior. Este álgebra dual es precisamente el álgebra de formas multilineales, y el emparejamiento entre el álgebra exterior y su dual viene dado por el producto interno.