Banaketa normal

Parametro ezberdinak dituzten lau banaketa normalen trinkotasun funtzioak. Kolore berdez irudikatzen dena N(0,1) banaketa normal estandarra da.

Probabilitate teorian eta estatistikan, zorizko aldagai bat banaketa normalari jarraitzen diola, zorizko aldagai gausstarra dela, edo laburrago normal banatzen dela esaten da, zorizko aldagaiaren trinkotasun funtzioa honelakoa denean:

Estatistikan gehien erabiltzen den probabilitate banaketa da, bere ezaugarri bereziengatik. Zorizko aldagaiak har ditzakeen balioei buruz inongo murrizketarik jartzen ez duela (bere balio posibleak -tik -ra baitoaz), bere trinkotasun funtzioak kanpai itxura erakusten du beti (eta horregatik Gaussen kanpaia ere deitzen zaio), datuen histograma irudikatuz gero errealitateko aldagai asko bezalaxe. Hori dela eta, aldagai askoren eredu gisa aukeratzen da, hortik datorkio normal izena. Bestalde, oso propietate matematiko interesgarriak ditu: probabilitate banaketa anitzen limitea da eta inferentzian zenbatesle askoren banaketa izanik, hipotesi kontraste eta konfiantza tarte askotarako erabiltzen da. Limitearen teorema zentralari esker, banaketa normala zorizko aldagaia faktore anitzen ekarpenen batura denerako ere da baliozkoa.

Banakuntza normala bi parametroren araberakoa da: μ eta σ, batez bestekoa edo itxaropen matematikoa eta desbideratze estandarra hurrenez hurren. Horrela, X aldagai bat banaketa normalari jarraitzen diola honela adierazten da:

Banakuntza normal estandarra μ=0 eta σ=1 parametroak dituen banaketa normala da eta beste banaketa normaletako probabilitateak kalkulatzeko oinarri gisa erabiltzen da. Banakuntza normal estandarra honela irudikatzen da:


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in