Hyperbolinen geometria

Osa artikkelisarjaa

Hyperbolinen geometria käsittelee kaksiulotteista, negatiivisesti kaarevaa pintaa. Pinta muistuttaa muodoltaan hieman satulaa, ja joskus puhutaankin tässä yhteydessä satulapinnasta. Toinen esimerkkipinta on torvi. Monien ominaisuuksien puolesta hyperbolisen geometrian "vastakohtana" voidaan pitää pallo- eli elliptistä geometriaa, joilloin euklidinen geometria on näiden kahden väliin jäävä rajatapaus.

Hyperbolinen geometria eroaa monin tavoin perinteisestä euklidisesta geometriasta, joka käsittelee ääretöntä tasaista tasoa. Hyperbolisella pinnalla kolmion kulmien summa on esimerkiksi aina vähemmän kuin 180 astetta, ja suoralle voidaan yksittäisen pisteen läpi piirtää ääretön määrä sille yhdensuuntaisia suoria.

Hyperbolisen pinnan voi yleistää myös kahta useampaan ulottuvuuteen.[1]

  1. Schroderus, Riikkka: Hyperboolisesta geometriasta. Solmu, 3/2015. Helsingin yliopiston Matematiikan ja tilastotieteen osasto.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in