Tähän artikkeliin tai osioon ei ole merkitty lähteitä, joten tiedot kannattaa tarkistaa muista tietolähteistä. Voit auttaa Wikipediaa lisäämällä artikkeliin tarkistettavissa olevia lähteitä ja merkitsemällä ne ohjeen mukaan. |
Taajuusresoluutio kertoo, millä tarkkuudella mittalaite tai signaalinkäsittelyn algoritmi kykenee erottamaan signaalin eri taajuuskomponentit toisistaan.
Resoluutiota, jolla aikatason (tai esimerkiksi kuvankäsittelyssä spatiaalitason/kaksiulotteisen tason) signaalia voidaan tarkastella taajuuden funktiona rajoittaa energian "vuoto" analysoitavien taajuuskomponenttien välillä. Ideaalisessa tapauksessa eri taajuuskomponentit, tai niitä kuvaavat funktiot, ovat ns. ortogonaalisia eli kohtisuoria toisiinsa nähden eli ne eivät häiritse toisiaan. Tämä on tuttua vektorilaskennasta, jossa ortogonaalisten vektoreiden projektiot toisiinsa nähden ovat nollia.
Olkoon aikatasossa näytteitä kappaletta . Jos näytteisiin kohdistetaan spektrianalyysissä käytettävä diskreettiaikainen Fourier'n muunnos
,
niin näytteenottotaajuuteen suhteutettu taajuusresoluutio on luokkaa . Fourier-muunnoksen avulla kyetään siis erottelemaan näytteenottotaajuuteen suhteutetut taajuudet ja toisistaan.
Tämä lähestymistapa on luontaista klassiselle spektrianalyysille, jota on vauhdittanut FFT-algoritmin (Fast Fourier Transform) eli nopean Fourier-muunnos-algoritmin kehitys 1960-luvulla.
Kuitenkin on mahdollista päästä teoriassa jopa äärettömään resoluutioon käyttäen moderneja spektrianalyysiin ja digitaaliseen signaalinkäsittelyyn perustuvia menetelmiä. Näistä mainittakoon muun muassa ARMA (Autoregressive, Moving Average) eli autoregressivinen, liukuvan keskiarvon menetelmä, joka käyttää hyväkseen parametrisia oletuksia datasta. Toinen tutkimuksen kannalta suosittu moderni menetelmä on aliavaruustyyppinen MUSIC (MUltiple SIgnal Classification), joka sekin nojaa parametriseen oletukseen.
Parametrisilla menetelmillä on kuitenkin kaksi haittapuolta verrattuna klassiseen Fourier-pohjaiseen menetelmään nähden:
Taajuusresoluution käsite on tärkeä seikka muun muassa tietoliikenne-, tutka- ja kaikuluotaintekniikassa sekä geofysiikassa ja seismologiassa.