Gaz noble

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Uue Ubn Uth Uts Uto Ute Uqn Uqu Uqb  
   
  * La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
  ** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
  Ubu Ubb Ubt Ubq Ubp Ubh Ubs Ubo Ube Utn Utu Utb Utt Utq Utp
 
  Li Métaux alcalins Al Métaux pauvres
  Be Métaux alcalino-terreux B Métalloïdes
  La Lanthanides Non-métaux :
  Ac Actinides H « CHNOPS » et sélénium
  Sc Métaux de transition F Halogènes
  Mt Nature chimique inconnue He Gaz nobles
  Uue Éléments hypothétiques (dont les superactinides)

Les gaz nobles, ou gaz rares sont un sous-ensemble d’éléments chimiques du groupe 18 (anciennement « groupe VIIIA », voire « groupe 0 ») du tableau périodique. Ce sont l'hélium 2He, le néon 10Ne, l'argon 18Ar, le krypton 36Kr, le xénon 54Xe et le radon 86Rn, ce dernier étant radioactif, avec une période de 3,8 jours pour le radon 222, son isotope le plus stable. Ils forment une famille d'éléments chimiques très homogène de gaz monoatomiques incolores et inodores chimiquement très peu réactifs, voire totalement inertes pour les deux plus légers — hormis dans des conditions très particulières. L'oganesson 118Og, découvert au début du XXIe siècle, prolonge le 18e groupe, mais ses propriétés chimiques sont encore trop largement méconnues pour pouvoir le ranger dans une quelconque famille ; les effets relativistes d'un noyau atomique très chargé sur son cortège électronique pourraient en altérer suffisamment les propriétés, de sorte que cet élément, qui serait probablement solide et non gazeux, ne serait plus nécessairement un gaz noble.

Les propriétés des gaz nobles s'accordent bien avec les théories modernes décrivant la structure des atomes. Leur couche de valence est saturée, de sorte qu'ils n'établissent normalement pas de liaison covalente avec d'autres atomes, d'où leur inertie chimique. On ne connaît que quelques centaines[a] de composés de gaz nobles, essentiellement du xénon. À pression atmosphérique, la différence entre la température d'ébullition et la température de fusion d'un gaz noble n'excède jamais 10 °C, de sorte qu'ils n'existent à l'état liquide que dans un intervalle de températures très étroit.

On obtient le néon, l'argon, le krypton et le xénon à partir de l'atmosphère terrestre par liquéfaction et distillation fractionnée. L'hélium provient du gaz naturel, dont il est extrait par des techniques de séparation cryogénique. Le radon est généralement isolé à partir de la désintégration radioactive de composés de radium, de thorium ou d'uranium dissous.

La nature chimiquement inerte des gaz nobles les rend utiles pour toutes les applications où les réactions chimiques sont indésirables. L'argon est ainsi utilisé dans les ampoules à incandescence pour éviter l'oxydation du filament de tungstène. Dans un autre registre, l'hélium est utilisé en plongée sous-marine comme gaz respiratoire sous forme d'héliox ou de trimix pour limiter à la fois les turbulences du gaz circulant dans l'équipement respiratoire, la toxicité de l'azote (narcose à l'azote) et la toxicité de l'oxygène (hyperoxie). Les gaz nobles sont par ailleurs utilisés dans des domaines aussi divers que l'éclairage, le soudage, ou encore l'astronautique.

Fluorescence de l'hélium, du néon, de l'argon, du krypton et du xénon en tube à décharge de 20 cm sous 1,8 kV, 18 mA et 35 kHz.


Erreur de référence : Des balises <ref> existent pour un groupe nommé « alpha », mais aucune balise <references group="alpha"/> correspondante n’a été trouvée


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in