Relation binaire

En mathématiques, une relation binaire entre deux ensembles et (ou simplement relation entre et ) est définie par un sous-ensemble du produit cartésien , soit une collection de couples dont la première composante est dans et la seconde dans . Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation sont dits en relation par . Une relation binaire est parfois appelée correspondance entre les deux ensembles.

Par exemple, en géométrie plane, la relation d'incidence entre un point et une droite du plan « le point A est sur la droite d » est une relation binaire entre l'ensemble des points et l'ensemble des droites du plan. Les fonctions ou applications d'un ensemble dans un ensemble peuvent être vues comme des cas particuliers de relations binaires entre et .

Lorsque , l'ordre des deux composantes d'un couple a son importance. Par exemple, la relation « … est strictement inférieur à … », notée <, sur l'ensemble N des entiers naturels est une relation sur N ; on note pour indiquer que et sont en relation. Le couple (1, 2) est un élément du graphe, contrairement au couple (2, 1).

La notion de relation peut être généralisée à plus de deux arguments, voir « Relation (mathématiques) ».


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in