Reste

Division euclidienne de 11 par 4, dont le reste est 3.

En mathématiques, le résultat d’une division est un quotient et un reste. Le reste est nul si le quotient des deux nombres de la division est exact, sinon ce quotient est approximatif. Une division est dite euclidienne quand son dividende, son diviseur et son quotient sont des nombres entiers naturels. Dans une division euclidienne, le produit du quotient et du diviseur plus le reste est égal au dividende, et le reste est un entier naturel strictement inférieur au diviseur. Un nombre entier est multiple d’un autre entier non nul si et seulement si, dans une division euclidienne, le quotient de la valeur absolue du premier par la valeur absolue du second est exact, autrement dit, si et seulement si le reste de cette division euclidienne est nul. En informatique, un tel reste est obtenu par l'opérateur modulo.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in