Fungsi gelombang

Setiap gambar merupakan fungsi gelombang yang memenuhi persamaan Schrödinger tak-gayut waktu untuk osilator harmonis.
Kiri: bagian riil (biru) dan bagian imajiner (kanan) dari fungsi gelombang.
Kanan: distribusi probabilitas dalam menemukan partikel dengan fungsi gelombang ini pada posisi tertentu.
Kedua baris teratas adalah contoh keadaan stasioner. Baris bawah adalah contoh keadaan non stasioner. Kolom sebelah kanan menunjukkan mengapa keadaan stasioner disebut "stasioner".

Fungsi gelombang dalam fisika kuantum adalah suatu persamaan matematis yang menggambarkan keadaan kuantum dari suatu sistem kuantum terisolasi. Fungsi gelombang merupakan suatu amplitudo probabilitas bernilai-kompleks, dan kebolehjadian untuk hasil yang mungkin dari pengukuran yang dibuat oleh sistem dapat diturunkan darinya. Secara umum, fungsi gelombang disimbolkan dengan huruf Yunani ψ atau Ψ (psi kecil dan kapital, berturut-turut).

Secara umum, fungsi gelombang suatu sistem dapat dinyatakan dalam berbagai perubah, seperti dalam momentum, posisi, energi, dan sebagainya. Fungsi gelombang dapat pula berupa fungsi waktu, dan dapat pula dinyatakan sebagai fungsi tak-gayut waktu. Menurut prinsip superposisi mekanika kuantum, fungsi gelombang dapat dijumlahkan dan dikali dengan bilangan kompleks untuk menghasilkan fungsi gelombang baru dan suatu ruang Hilbert. Hasil kali antara dua fungsi gelombang merupakan ukuran tumpang-tindih antara keadaan fisika terkait, dan digunakan sebagai dasar interpretasi kebolehjadian pada mekanika kuantum, hukum Born, yang mengaitkan kebolehjadian transisi pada hasil kali tersebut. Persamaan Schrödinger menentukan bagaimana fungsi gelombang berubah terhadap waktu, dan fungsi gelombang berperilaku secara kualitatif sebagaimana gelombang lainnya, seperti gelombang air atau gelombang pada sebuah dawai, karena persamaan Schrödinger secara matematis merupakan jenis persamaan gelombang. Namun, fungsi gelombang dalam mekanika kuantum menjelaskan suatu jenis fenomena fisika, yang secara fundamental berbeda dengan gelombang mekanika klasik.[1][2][3][4][5][6][7]

Dalam interpretasi statistik Born mengenai mekanika kuantum non-relativistik,[8][9][10] modulus kuadrat dari fungsi gelombang, |ψ|2, adalah suatu bilangan riil yang ditafsirkan sebagai rapat kebolehjadian untuk menemukan partikel di titik tersebut. Persyaratan umum yang harus dimiliki oleh suatu fungsi gelombang disebut sebagai kondisi normalisasi. Karena fungsi gelombang bernilai kompleks, hanya fase dan magnitudo relatifnya saja yang dapat diukur—nilainya tidak dapat diukur; dengan menerapkan operator kuantum, dengan nilai eigen yang menyatakan kebolehjadian dari pengukuran tersebut, pada fungsi gelombang ψ dan menghitung distribusi statistik dari kuantitas yang terukur.

  1. ^ Born 1927, hlm. 354–357
  2. ^ Heisenberg 1958, hlm. 143
  3. ^ Heisenberg, W. (1927/1985/2009). Heisenberg diterjemahkan oleh Camilleri 2009, hlm. 71, (dari Bohr 1985, hlm. 142).
  4. ^ Murdoch 1987, hlm. 43
  5. ^ de Broglie 1960, hlm. 48
  6. ^ Landau & Lifshitz, hlm. 6
  7. ^ Newton 2002, hlm. 19–21
  8. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Born_1926_A
  9. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Born_1926_B
  10. ^ Born, M. (1954).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in