Neutrino

Neutrino/Antineutrino
Penggunaan pertama kali dari ruang gelembung hidrogen untuk mendeteksi neutrino, pada 13 November 1970. Sebuah neutrino menghantam proton dalam atom hidrogen. Tabrakan itu terjadi pada titik di mana tiga jalur berasal di sebelah kanan foto.
Komposisi: Partikel dasar
Kelompok: Lepton, antilepton
Generasi: Pertama, Kedua dan Ketiga
Interaksi: Interaksi lemah dan gravitasi
Simbol: νe, νμ, ντ, νe, νμ, ντ
Antipartikel: Antineutrino kemungkinan identik dengan neutrino (lihat Majorana fermion).
Penggagas: νe (Elektron neutrino): Wolfgang Pauli (1930)
νμ (Muon neutrino): Akhir 1940-an

ντ (Tau neutrino): Mid 1970s

Penemu: νe: Clyde Cowan, Frederick Reines (1956)
νμ: Leon Lederman, Melvin Schwartz and Jack Steinberger (1962)
ντ: DONUT collaboration (2000)
Tipe: 3 – Neutrino elektron, Neutrino muon and Neutrino tau
Massa: 0.320 ± 0.081 eV (jumlah 3 rasa)[1][2][3]
Muatan listrik: e
Spin: ½
Hipermuatan lemah: −1

Neutrino adalah suatu partikel dasar yang tidak memiliki massa maupun muatan listrik.[4] Neutrino mempunyai spin 1/2 dan oleh sebab itu merupakan fermion. Massanya sangat kecil, walaupun eksperimen yang terbaru (lihat Super-Kamiokande) menunjukkan bahwa massanya ternyata tidak sama dengan nol. Neutrino hanya berinteraksi lewat interaksi lemah dan gravitasi, tak satu pun lewat interaksi kuat atau interaksi elektromagnetik.

Sebuah Neutrino merupakan sebuah partikel subatomik yang sangat mirip dengan elektron. Namun, Neutrino tidak memiliki medan elektrik dan massa yang sangat kecil, bahkan mendekati nol. Neutrinos merupakan salah satu partikel yang jumlahnya berlimpah ini alam semesta. Karena Neutrino memiliki interaksi yang sangat kecil dengan materi. Selain itu, Neutrino sangat sulit untuk terdeteksi.

Untuk mendeteksi Neutrino memerlukan sebuah detektor yang besar dan sensitif.

A neutrino is a subatomic particle that is very similar to an electron, but has no electrical charge and a very small mass, which might even be zero. Neutrinos are one of the most abundant particles in the universe. Because they have very little interaction with matter, however, they are incredibly difficult to detect.[5]

To detect neutrinos, very large and very sensitive detectors are required. Typically, a low-energy neutrino will travel through many light-years of normal matter before interacting with anything. Consequently, all terrestrial neutrino experiments rely on measuring the tiny fraction of neutrinos that interact in reasonably sized detectors. For example, in the Sudbury Neutrino Observatory, a 1000 ton heavy water solar-neutrino detector picks up about 1012 neutrinos each second. About 30 neutrinos per day are detected.[5]

Neutrino tercipta sebagai hasil dari beberapa jenis peluruhan radioaktif tertentu atau sebagai karena reaksi nuklir seperti yang terjadi di Matahari, pada reaktor nuklir, atau ketika sinar kosmik membentur sekelompok atom. Terdapat tiga jenis (atau "cita rasa)" dari neutrino: neutrino elektron, neutrino muon, dan neutrino tauon (atau tau neutrino); dan masing-masing jenis juga memiliki anti partikel yang sesuai, yang disebut antineutrino. Elektron neutrino (atau antineutrino) dihasilkan ketika suatu proton berubah menjadi neutron (atau suatu neutron menjadi proton), yaitu dua bentuk dari peluruhan beta. Interaksi yang melibatkan neutrino dimediasi melalui proses interaksi lemah.

Karena dalam proses interaksi lemah penampang nuklir sangat kecil, neutrino dapat melewati materi nyaris tanpa halangan. Untuk neutrino-neutrino tipikal yang dihasilkan di dalam Matahari (dengan energi beberapa MeV) diperlukan kira-kira satu tahun cahaya (~1016m) timbal untuk memblok setengah dari jumlahnya.

  1. ^ "Astronomers Accurately Measure the Mass of Neutrinos for the First Time". scitechdaily.com. Image credit:NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI). February 10, 2014. Diarsipkan dari versi asli tanggal 2014-05-08. Diakses tanggal May 7, 2014. 
  2. ^ Foley, James A. (February 10, 2014). "Mass of Neutrinos Accurately Calculated for First Time, Physicists Report". natureworldnews.com. Image credit: . via Wikimedia Commons. Diarsipkan dari versi asli tanggal 2014-05-08. Diakses tanggal May 7, 2014. 
  3. ^ Battye, Richard A.; Moss, Adam (January 7, 2014). "Evidence for massive neutrinos from CMB and lensing observations" (PDF). astro-ph.CO. Ithaca, New York: Cornell University Library. arXiv:1308.5870v2alt=Dapat diakses gratis. Diakses tanggal May 7, 2014.  Hapus pranala luar di parameter |journal= (bantuan)
  4. ^ Rahim, F. R., dan Sari, S. Y. (2019). Perkembangan Sejarah Fisika. Purwokerto: CV IRDH. hlm. 451. ISBN 978-623-7343-14-1. 
  5. ^ a b "Homepage". EquickLearning - Learn Any Where (dalam bahasa Inggris). Diakses tanggal 2021-04-17. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in