Il fenomeno di Gibbs si presenta quando viene ricostruito un segnale dalla serie di Fourier troncata. Prende il nome dal fisico statunitense Willard Gibbs.
Data una funzione periodica che presenta dei punti di discontinuità di prima specie, il suo sviluppo tramite la serie di Fourier è formato da infiniti termini. Quando si ricostruisce il segnale, se questa serie viene troncata si ottengono delle sovraelongazioni del valore della funzione ricostruita nell'intorno del punto di discontinuità: all'aumentare del numero delle componenti della serie il valore di picco di detta sovraelongazione rimane costante, mentre le oscillazioni alle quali tali sovraelongazioni si riferiscono si avvicinano al punto di discontinuità.