Resistenza termica

In fisica, la resistenza termica è definita come la difficoltà del calore nell'attraversare un mezzo solido, liquido o gassoso.

In genere i corpi che conducono male il calore conducono male anche l'elettricità (vi sono eccezioni come il diamante che conduce bene il calore pur essendo un isolante elettrico; infatti la conducibilità di un materiale, che sia elettrica o termica, dipende in larga misura dalla disposizione del suo reticolo cristallino, più ordinato è questo, più quel materiale sarà un buon conduttore[1]).

Fig. 1. Un comune dispositivo di potenza su dissipatore. Tra i due componenti compare una sottile pellicola che può essere un elastomero per diminuire la resistenza termica tra il componente e il dissipatore (dove possono essere presenti interstizi d'aria che limitano la conduzione termica) o un sottile foglio di mica usato quando si deve creare un isolamento elettrico

Si immagini un processo di scambio termico tra due punti a e b mantenuti a temperature costanti diverse tra loro, Ta e Tb, con Ta>Tb (si pensi per esempio ai punti interno ed esterno di un muro perimetrale di un'abitazione riscaldata durante l'inverno): il calore passerà spontaneamente dal punto a al punto b, e la velocità del processo, una volta fissate e mantenute le temperature Ta e Tb, dipende proprio dalla resistenza termica del mezzo.

In condizioni stazionarie, cioè tralasciando il periodo transitorio di inizio dello scambio termico e considerando solo dopo tale periodo (nell'esempio precedente si immagini che la casa sia già riscaldata e si debba soltanto mantenere costante la temperatura interna), si definisce flusso radiante W la quantità di calore scambiata nell'unità di tempo, e si misura in joule su secondo [J/s], cioè watt [W]. Il rapporto tra la differenza di temperatura (Ta - Tb) e il flusso radiante W che essa provoca in un mezzo, è la resistenza termica del mezzo, e si misura in kelvin su watt [K/W], o in modo equivalente in gradi Celsius su watt [°C/W].

Nel Sistema internazionale l'unità di misura della resistenza termica è data da kelvin per watt (K/W), o in modo equivalente in gradi Celsius (°C) per watt (°C/W) (nelle equazioni usate compare solo la differenza di temperatura tra due punti che ha lo stesso valore se misurata in gradi Celsius o kelvin: 1 K = 1 °C; quello che cambia è solo il riferimento: 0 °C corrispondono a 273,15 K) [2].

La resistenza termica dei materiali è di grande interesse nell'ingegneria elettronica perché la maggior parte dei componenti elettronici genera calore che va smaltito. I componenti elettronici sono sensibili alla temperatura di funzionamento: nei datasheet viene specificata la massima temperatura del die (chiamato anche chip) per cui viene garantito un funzionamento corretto e l'affidabilità è legata in modo esponenziale a questo parametro (più bassa è la sua temperatura minore è la probabilità di guasto).
Quindi in fase di progetto è importante calcolare e verificare le temperature dei componenti nelle condizioni termiche di funzionamento più stressanti.

  1. ^ Conducibilità termica di alcune sostanze comuni
  2. ^ Ad esempio nel datasheet del transistor (EN) TIP47 della STMicroelectronics se non viene montato su dissipatore e deve dissipare una potenza di 2 watt la temperatura della sua giunzione sale di 62,5 °C x 2 = 125 °C rispetto alla temperatura ambiente (vedi pag. 2 del datasheet: tabella THERMAL DATA, la seconda riga della tabella Thermal Resistance Junction-ambient 62,5 °C/W). Se la temperatura ambiente fosse di 25 °C la giunzione raggiungerebbe i 150 °C. Nella pagina 1 si vede che questa è la massima temperatura della giunzione Tj = 150 °C e spiega perché nella stessa pagina si dice che la massima potenza dissipabile Ptot, nel caso di temperatura ambiente massima di 25 °C, deve essere limitata proprio a 2 watt. L'uso di un dissipatore, come descritto più avanti, permette al transistor di dissipare potenze molto maggiori

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in