Stella neutronica

Prima observatio directa stellae neutronicae solitariae per lucem visibilem. Stella neutronica est RX J1856.5−3754.

Stella neutronica est nucleus collapsus supergigantis, cuius prior erat massa inter 10 et 25 massarum solarium, vel fortasse grandior si dives erat stella metallorum,[1] qui factus est stella degener. Exceptis foraminibus nigris et aliquîs corporibus hypotheticis (e.g. foraminibus albis, stellis quarcicis), stellae neutronicae sunt minimae et densissimae corporum stellarum.[2] Radium habent ordine 10 chiliometrorum et massam circiter 1.4 massarum solarium.[3] Coniunctio explosionis supergigantis cum collapsione gravitationali – quae nucleum stellarem plus quam ad densitatem pumilionum albarum et usque ad densitatem nucleorum atomicorum comprimit – stellam neutronicam gignit.

Post quam stellae neutronicae creantur non alium calorem generant et lente refrigerant; possunt tamen ultro per collisiones vel accretionem evolvere. Pleraque coniectationes de his corporibus inferunt stellas neutronicas paene omnino neutronibus constare (particulis subatomicis nullo onere electrico et massa paulo grandiore quam massa protonis). Nam electrones materiei vulgaris cum protonibus extremo regimine stellarum neutronicarum miscentur ut neutrones generent.

Stellae neutronicae contra ulteriorem contrationem pressione degenerationis neutronum sustinentur (effectu exclusionis principio Pauli appellato) sicut pressio degenerationis electronum pumiliones albas sustinet. Per se non sufficit tamen talis pressio ut stellam sustineat ultra 0.7 M,[4][5] et repulsivae vires nucleares maxime interveniunt ad stellas neutronicas grandiores sustinendas.[6][7] Si massa stellae excedit limitem Tolman–Oppenheimer–Volkoff duarum massarum solarium, aequabilitas pressionis et virium nuclearum insufficiens fit, et stella tum collabitur adusque foramen nigrum creatur. Stella neutronica maxima massa detecta, PSR J0952–0607, aestimatur 2.35 ± 0.17 massis solaribus.[8]

  1. Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H. (2003). "How Massive Single Stars End Their Life". Astrophysical Journal 591 (1): 288–300. arXiv:astro-ph/0212469 
  2. Glendenning, Norman K. (2012). Compact Stars: Nuclear Physics, Particle Physics and General Relativity (illustrated ed.). Springer Science & Business Media. p. 1. ISBN 978-1-4684-0491-3 
  3. Seeds, Michael; Backman, Dana (2009). Astronomy: The Solar System and Beyond (6th ed.). Cengage Learning. p. 339. ISBN 978-0-495-56203-0 
  4. Tolman, R. C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review 55 (4): 364–373 
  5. Oppenheimer, J. R.; Volkoff, G. M. (1939). "On Massive Neutron Cores". Physical Review 55 (4): 374–381 
  6. Neutron Stars. . www.astro.princeton.edu 
  7. Douchin, F.; Haensel, P. (December 2001). "A unified equation of state of dense matter and neutron star structure". Astronomy & Astrophysics 380 (1): 151–167. arXiv:astro-ph/0111092 
  8. "The heaviest neutron star on record is 2.35 times the mass of the sun". sciencenews. 22 July 2022 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy