Bij een logaritmische schaal wordt niet de numerieke waarde zelf van een grootheid gegeven, maar een logaritme van de verhouding van de grootheid tot een referentiewaarde. De grootheid wordt niet direct als een veelvoud van de referentiewaarde , de eenheid, uitgedrukt, maar als een bepaald niveau hierboven:
Vanwege een beveiligingsprobleem met de MediaWiki Graph-software is het momenteel niet mogelijk deze grafiek weer te geven. Zodra de software is bijgewerkt zal de grafiek vanzelf weer zichtbaar worden.
Zo wordt bij de bel-schaal voor het geluidsniveau de gehoordrempel als referentiewaarde met niveau 0 gebruikt en wordt het getal 10 als het grondtal van de logaritme gebruikt. Een geluidsniveau van 4,5 bel betekent dus een geluidsintensiteit van 104,5 = 31623 keer zo sterk als de gehoordrempel. De aanduiding bel wordt wel gehanteerd als pseudo-eenheid. Daaruit is de meer gebruikelijke decibelschaal met pseudoeenheid decibel (dB) ontstaan. Een niveau van 45 dB komt dan overeen met 4,5 bel. Eigenlijk hanteert de decibelschaal als referentiewaarde, net als de bel-schaal, de gehoordrempel, maar als grondtal van de gebruikte logaritme het getal 100,1 = 1,258925... Wordt de natuurlijke logaritme gebruikt, dan spreekt men van neperschaal. Andere logaritmische schalen zijn onder meer:
Logaritmische schalen geven relatieve veranderingen weer. Stijgt een grootheid relatief met 10%, dan is de nieuwe waarde . Op een logaritmische schaal betekent deze stijging een toename van
tot
dus een toename met , ongeacht het uitgangsniveau. Omdat veel zintuiglijke waarnemingen gelijke relatieve toenamen als gelijk ervaren (wet van Weber), zijn logaritmische schalen een geschikt middel om grootheden zo uit te drukken dat hun waarden met onze ervaring overeenkomen. Ook anderszins is het soms handiger om gelijke factoren in toename weer te geven als gelijke toename in niveau. Verdubbeling van waarde betekent in dB-schaal een toename van niveau met ca. 3,01 dB (immers ).
In de bovenstaande grafiek van de populatiegroei in Engeland is de verhouding tussen 2 miljoen en 5 miljoen (2,5) gelijk aan de verhouding tussen 20 miljoen en 50 miljoen (ook 2,5). De logaritmische afstand tussen 2 miljoen en 5 miljoen is daarom hetzelfde als de afstand tussen 20 miljoen en 50 miljoen.
Wanneer de logaritme met het grondtal 10 wordt gebruikt (10log), dan is elke stap ter grootte 1 op de schaal 10 keer zo groot als de vorige. Een schaal van 1, 2, 3 betekent dus in waarden: 10, 100, 1000.