Nicotinamide-adenine-dinucleotide

Nicotinamide-adenine-dinucleotide
Structuurformule en molecuulmodel
▵ Structuurformule van geoxideerd NAD+
Structuurformule van geoxideerd NAD+
▵ Molecuulmodel van geoxideerd NAD+
Molecuulmodel van geoxideerd NAD+
Algemeen
Molecuulformule C21H27N7O14P2
IUPAC-naam Nicotinamide-adenine-dinucleotide
Andere namen onder andere: [1]
  • Difosfopyridine-nucleotide (DPN+),
  • Co-enzym I,
  • Codehydrase I,
  • Cozymase 1
Molmassa 663.43 g/mol
CAS-nummer 53-84-9
PubChem 925
Wikidata Q12499775
Waarschuwingen en veiligheidsmaatregelen
Hygroscopisch? Ja
Fysische eigenschappen
Aggregatietoestand vast
Kleur wit
Smeltpunt 160 °C
Tenzij anders vermeld zijn standaardomstandigheden gebruikt (298,15 K of 25 °C, 1 bar).
Portaal  Portaalicoon   Scheikunde

Nicotinamide-adenine-dinucleotide (NAD) is een co-enzym dat in de cellen van alle organismen functioneert als biochemische elektronendrager. Het is een groot organisch molecuul dat met behulp van een enzym een bepaalde chemische reactie kan laten verlopen. NAD kan in twee vormen bestaan: als oxidator en als reductor. In de eerste toestand, die wordt aangeduid als NAD+, kan NAD elektronen opnemen. In de tweede vorm kan het elektronen afstaan; deze toestand wordt aangeduid als NADH.

NAD is van belang bij diverse stofwisselingsprocessen. Op moleculair niveau is de stofwisseling van een organisme te beschouwen als een aaneenschakeling van redoxreacties: voortdurende omzettingen van chemische energie. NAD vervult in deze reacties een hoofdrol als elektronendrager, in bijzonder bij de energieproductie van de cel. NAD+ neemt daarbij elektronen op uit voedingsstoffen zoals suikers en vetzuren. Het NADH dat zo ontstaat geeft vervolgens de elektronen af in diverse cellulaire processen die het organisme in leven houden.

In de meeste organismen wordt NAD de novo gevormd uit de aminozuren tryptofaan en asparaginezuur. Er bestaan ook syntheseroutes waarbij andere stoffen worden gebruikt, zoals het in voeding aanwezige nicotinezuur. Het op peil houden van de cellulaire NAD-concentraties is volgens huidige inzichten een bepalende factor in het tegengaan van veroudering.[2][3]

NAD wordt vaak in een adem genoemd met NADP, voluit nicotinamide-adenine-dinucleotidefosfaat. NADP wordt uit NAD gevormd door toevoeging van een fosfaatgroep aan een van de ribosen. De biologische functies van NADP zijn zeer vergelijkbaar met die van NAD. NADP wordt echter gebruikt als co-enzym bij fotosynthese en enkele assimilatiereacties, terwijl NAD voornamelijk een rol speelt bij celademhaling. NAD en NADP functioneren in meer dan 400 enzymatische reacties en komen voor in alle vormen van leven.

  1. (en) National Center for Biotechnology Information. PubChem Database. CID=925, 29-05-2019.
  2. (en) Yaku K, Okabe K, Nakagawa T. (2018). NAD metabolism: Implications in aging and longevity. Ageing Research Reviews 47: 1-17. PMID 29883761. DOI: 10.1016/j.arr.2018.05.006.
  3. (en) Aman Y, Qui Y, Tao J, Fang, E. (2018). Therapeutic potential of boosting NAD+ in aging and age-related diseases. Translational Medicine of Aging 2: 30-37. DOI: 10.1016/j.tma.2018.08.003.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in