Funkcja

Funkcja przedstawiona jako graf. Każdemu argumentowi ze zbioru przyporządkowano dokładnie jeden element ze zbioru przy czym: (1) dwóm różnym elementom w może odpowiadać ten sam element – funkcja nie musi być iniekcją; (2) nie każdy element zbioru musi być wartością funkcji – funkcja nie musi być suriekcją.
Przykładem funkcji jest kwadrat liczby: y=x2. Funkcja rzeczywista zdefiniowana tym wzorem ma wykres w kartezjańskim układzie współrzędnych – jest nim parabola.
Wykres części rzeczywistej funkcji wykładniczej w dziedzinie zespolonej.

Funkcja (łac. functio, -onis „odbywanie, wykonywanie, czynność”[a]), odwzorowanie[1][2], przekształcenie[3], transformacja[4] – pojęcie matematyczne używane w co najmniej dwóch zbliżonych znaczeniach:

  • dla danych dwóch zbiorów i funkcją nazywano każde przyporządkowanie[b] elementom zbioru po jednym elemencie zbioru [c][5];
  • zazwyczaj wymaga się też, aby to przypisanie dotyczyło każdego elementu zbioru [6]. Wtedy obiekty spełniające tylko pierwszy warunek są znane jako funkcje częściowe.

Funkcje oznacza się na ogół literami itd. Jeśli funkcja przyporządkowuje elementom zbioru elementy zbioru to pisze się: W kontekście każdej funkcji używa się kilku podstawowych pojęć:

  • zbiór nazywa się dziedziną funkcji f, przy czym ten termin ma też inne znaczenie opisane w linkowanym artykule. Inna nazwa to zbiór argumentów[2], ponieważ jego każdy element nazywa się argumentem tej funkcji[2] lub zmienną niezależną;
  • zbiór to przeciwdziedzina tej funkcji lub jej zbiór wartości[2], przy czym te terminy mają też inne znaczenie – por. linkowane artykuły. Każdy element nazywa się wartością funkcji[2] lub zmienną zależną[7].

Funkcje to szczególne przypadki relacji binarnych. Relacja jest funkcją, jeśli spełnia dwa warunki, poniżej zapisane za pomocą kwantyfikatorów[2]:

  1. jednoznaczność[8]:

Przez to funkcje rozumiane szeroko są też znane jako relacje jednoznaczne[9]. Teoria mnogości definiuje relacje za pomocą iloczynu kartezjańskiego zbiorów, czyli zbioru par uporządkowanych:

Termin funkcja pojawił się w matematyce w XVII wieku, po czym kolejni uczeni nadawali mu nowe znaczenia[6]. Leonhard Euler w osiemnastym wieku był pierwszym matematykiem, który użył wpółczesnego oznaczenia funkcji[10]. Euler używał dwóch definicji funkcji, pierwsze jako analityczne wyrażenie (formuła), zawierajaca stałe oraz zmienne. Druga definicja to zmienna zależna od innej zmiennej. Takie samo podejście można znaleźć w książkach Lagrange’a. Drugie podejście, z drobnymi zmianami, było używane przez późniejszych matematyków, takich jak Cauchy, Fourier, Drichlet, czy Reimann[11].

Funkcje stały się jednym z podstawowych i najważniejszych pojęć całej nowożytnej matematyki[6] i innych nauk ścisłych; funkcje:

Opisano dziesiątki odmian funkcji; niezależnie od dziedziny i przeciwdziedziny można wyróżnić funkcje różnowartościowe (iniekcje), funkcje „na” (suriekcje) oraz przecięcie tych dwóch zbiorów – funkcje wzajemnie jednoznaczne (bijekcje). Inne typy definiuje się m.in. za pomocą konkretnej dziedziny lub przeciwdziedziny, co opisano w dalszych sekcjach. Zbiór wszystkich funkcji ze zbioru do zbioru oznacza się [2].


Błąd w przypisach: Istnieje znacznik <ref> dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>
BŁĄD PRZYPISÓW
  1. odwzorowanie, [w:] Encyklopedia PWN [dostęp 2023-12-22].
  2. a b c d e f g Kuratowski i Mostowski 1966 ↓, s. 73.
  3. przekształcenie, [w:] Encyklopedia PWN [dostęp 2023-12-22].
  4. publikacja w otwartym dostępie – możesz ją przeczytać transformacja (w matematyce) [w:] Wielki słownik języka polskiego [online], Instytut Języka Polskiego PAN [dostęp 2023-12-23].
  5. Kołmogorow i Fomin 1989 ↓, s. 21.
  6. a b c Funkcja, [w:] Encyklopedia PWN [dostęp 2021-07-22].
  7. zmienna zależna, [w:] Encyklopedia PWN [dostęp 2023-12-22].
  8. jednoznaczność, [w:] Encyklopedia PWN [dostęp 2023-12-22].
  9. Moszner 1974 ↓, s. 81.
  10. William Dunham: Euler: The Master of Us All. The Mathematical Association of America, 1999, s. 17.
  11. Jahnke 2003 ↓, s. 156–157.
  12. równoliczność zbiorów, [w:] Encyklopedia PWN [dostęp 2023-12-23].

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy