Gradient – pole wektorowe wskazujące kierunki najszybszych wzrostów wartości danego pola skalarnego w poszczególnych punktach[1], przy czym moduł („długość”) każdego wektora jest równy szybkości wzrostu pola skalarnego w kierunku największego wzrostu.
Gradientem nazywa się również pojedynczy wektor wskazujący kierunek i szybkość wzrostu wspomnianego pola skalarnego w danym punkcie; wektor przeciwny do gradientu (oraz odpowiadające mu przeciwne do gradientowego pole wektorowe) nazywa się często antygradientem. Wyrażenie „zgodnie z gradientem” należy rozumieć jako „zgodnie z kierunkiem najszybszego wzrostu”.
Gradient to wreszcie nazwa operatora różniczkowego przekształcającego pole skalarne w opisane wyżej pole wektorowe (w powyższych znaczeniach gradient jest obrazem wspomnianego operatora, odpowiednio całej dziedziny i pojedynczego punktu). Uogólnieniem gradientu na funkcje przestrzeni euklidesowej w inną jest macierz Jacobiego. Jest ona macierzą przekształcenia liniowego znanego jako pochodna zupełna, dlatego za dalej idące uogólnienia (na funkcje między przestrzeniami Banacha) można uważać pochodną Gâteaux, a przy dodatkowych założeniach: pochodną Frécheta.