Grupa cykliczna – grupa generowana przez pojedynczy element nazywany jej generatorem[1] (grupa cykliczna może mieć wiele generatorów, ale każdy z nich samodzielnie generuje tę grupę). Oznacza to, że poprzez cykliczne iterowanie (wielokrotne złożenie) działania grupowego na generatorze lub jego odwrotności można uzyskać dowolny element tej grupy; w notacji multiplikatywnej elementy są więc potęgami generatora, a w notacji addytywnej – jego wielokrotnościami.
Grupę cykliczną daje się zatem przedstawić jako
gdzie jest (pewnym wybranym) generatorem grupy W szczególności może się zdarzyć, iż będzie dla pewnego równe elementowi neutralnemu – w tym wypadku grupa zawiera skończenie wiele elementów; jeżeli taka sytuacja nie zachodzi, to grupa ma nieskończenie wiele (dokładnie: przeliczalnie wiele) elementów. Najmniejszą grupą cykliczną jest grupa trywialna zawierająca tylko jeden element; najmniejszą grupą niecykliczną jest grupa Kleina (nazywana również „czwórkową”) rzędu
Grupy cykliczne należą do najprostszych i najlepiej poznanych grup: skończone i nieskończone grupy cykliczne mają tę samą strukturę co (odpowiednio) grupy addytywne dla (zob. arytmetyka modularna) oraz (zob. liczby całkowite). W szczególności stanowią one „budulec” niektórych rodzajów grup przemiennych, zob. klasyfikacje grup przemiennych o skończonej liczbie elementów oraz grup przemiennych o skończonej liczbie generatorów.
Grupa multiplikatywna dowolnego ciała skończonego (tj. zbiór elementów odwracalnych, czyli niezerowych, z mnożeniem) jest grupą cykliczną; w szczególności grupa multiplikatywna pierścienia klas reszt modulo jest cykliczna dla dowolnej liczby pierwszej Ogólniej, jest cykliczna wtedy i tylko wtedy, gdy lub jest postaci lub dla nieparzystej liczby pierwszej i liczby naturalnej Z drugiej strony dowolna grupa rzędu będącego liczbą pierwszą jest cykliczna.