Iloczyn skalarny – pewna forma dwuliniowa na danej przestrzeni liniowej, tj. dwuargumentowa funkcja o szczególnych własnościach przyporządkowująca dwóm wektorom danej przestrzeni liniowej wartość skalarną. Czasami spotyka się również nazwę iloczyn wewnętrzny, który zwykle odnosi się jednak do ogólnych iloczynów skalarnych wprowadzanych w abstrakcyjnych przestrzeniach liniowych nazywanych wtedy przestrzeniami unitarnymi; przestrzenie afiniczne z wyróżnionym iloczynem skalarnym nazywa się przestrzeniami euklidesowymi.
Zasadniczym celem wprowadzania iloczynu skalarnego w danej przestrzeni liniowej jest wprowadzenie na niej geometrii euklidesowej, w szczególności kąta między dwoma wektorami, co umożliwia mówienie o ich prostopadłości (nazywanej w tym kontekście ich ortogonalnością, która jest nieznacznym uogólnieniem) oraz obrotu. Iloczyn skalarny stanowi więc pomost między geometrią syntetyczną a geometrią analityczną. Ponieważ trójwymiarowa przestrzeń euklidesowa jest dobrym przybliżeniem świata rzeczywistego w skali makroskopowej, to iloczyn skalarny w niej określony znajduje zastosowanie w fizyce klasycznej, np. mechanice klasycznej (branie rzutów wektora siły wypadkowej jest tego przykładem); z kolei w mechanice kwantowej rozpatruje się (nieskończeniewymiarowe) przestrzenie Hilberta, czyli przestrzenie liniowe (nieskończonego wymiaru) z iloczynem skalarnym i dodatkową strukturą topologiczną (zob. Uogólnienia). Przykładowo praca mechaniczna to wielkość fizyczna wyrażająca się jako iloczyn skalarny siły oraz przemieszczenia
<ref>
dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>