Naprawa DNA

Uszkodzenie DNA doprowadziło do licznych pęknięć chromosomów

Naprawa DNA – szereg procesów prowadzących do identyfikacji i naprawy zmian w cząsteczkach DNA w żywej komórce. W komórkach organizmów żywych procesy metaboliczne i czynniki środowiskowe mogą powodować uszkodzenie DNA. W każdej komórce codziennie ma miejsce nawet milion takich uszkodzeń[1]. Wiele z nich powoduje trwałe zmiany w cząsteczce DNA, które mogą upośledzić albo pozbawić komórkę możliwości prawidłowej transkrypcji genu kodowanego przez uszkodzony fragment DNA. Inne uszkodzenia mogą skutkować potencjalnie groźną dla genomu komórki mutacją, dotyczącą tej komórki i wszystkich następnych powstałych z niej po podziałach. Oznacza to, że proces naprawy DNA w komórce musi być cały czas aktywny, by móc szybko i skutecznie niwelować skutki każdego uszkodzenia komórkowego DNA.

Powodzenie naprawy DNA zależy od wielu czynników, w tym typu i wieku komórki oraz środowiska pozakomórkowego. W komórce, w której duża ilość DNA uległa uszkodzeniu albo której mechanizmy naprawy DNA nie są wystarczająco efektywne, mogą zajść:

  • nieodwracalny stan wygaśnięcia aktywności komórki – starzenie się komórki;
  • samobójcza śmierć komórki, czyli apoptoza;
  • niekontrolowane podziały, prowadzące do powstania nowotworu.

Zdolność komórki do naprawy własnego DNA jest istotna dla integralności fizycznej całego genomu oraz integralności informacji genetycznej, którą niesie, a więc i dla prawidłowego funkcjonowania całego organizmu. Wiele genów które początkowo zidentyfikowano jako wpływające na długość życia komórek, z czasem okazały się być zaangażowane w procesy naprawy i ochrony DNA przed uszkodzeniem[2]. Nieprawidłowy przebieg naprawy zniszczeń komórkowych w komórkach generatywnych może doprowadzić do propagacji mutacji w gametach i w rezultacie, przekazania mutacji potomstwu. Z drugiej strony, między innymi takie mutacje są siłą napędową ewolucji biologicznej.

  1. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J: Molecular Biology of the Cell. Wyd. 5th ed. New York, NY: WH Freeman, 2004, s. 963.
  2. Browner WS, Kahn AJ, Ziv E, Reiner AP, Oshima J, Cawthon RM, Hsueh WC, Cummings SR. The genetics of human longevity. „Am J Med”. 117. 11, s. 851–860, 2004. PMID: 15589490. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in