Obrazy w mechanice kwantowej. Rozwiązując równanie Schrödingera niezależne od czasu, otrzymuje się wektor stanu przedstawiający stan układu kwantowego w pewnej chwili początkowej Pełny wektor stanu otrzymuje się, rozwiązując równanie Schrödingera zależne od czasu. Jeżeli hamiltonian układu nie zależy od czasu, to istnieje prosta zależność
Gdy jednak hamiltonian zależy od czasu, to rozwiązanie równania Schrödingera staje się trudniejsze.
Aby rozwiązać zagadnienie opisu układu mechanicznego nie jest jednak konieczne rozwiązywanie równania Schrödingera z pełnym operatorem Hamiltona. Niekiedy problem można uprościć, przyjmując inny tzw. obraz, czyli założyć, że w równaniu Schrödingera na wektory stanu działa niekoniecznie cały operator Hamiltona – wtedy pozostała jego część działa na obserwable, w tym na operator całkowitej energii układu, czyli pełny Hamiltonian. Wyróżnia się obrazy:
(1) obraz Schrödingera – zakłada pełny operator Hamiltona w równaniu ewolucji stanów kwantowych; jeżeli operator Hamiltona nie zależy od czasu, to jedynie wektory stanu zmieniają się w czasie, zaś obserwable są stałe w czasie,
(2) obraz Heisenberga – jedynie operatory zmieniają się w czasie,
(3) obraz Diraca (obraz oddziaływania) – zarówno wektory stanu, jak i operatory zmieniają się w czasie.
Możliwość przyjęcia różnych obrazów wynika stąd, że wielkościami mierzonymi w eksperymentach nie są ani operatory ani wektory stanu, a jedynie wielkości, które wynikają z połączenia tych dwóch elementów równań kwantowomechanicznych – wartości średnie i prawdopodobieństwa. Stąd wynika możliwość przyjęcia różnych obrazów.