Twierdzenie Abela-Ruffiniego

Twierdzenie Abela-Ruffiniego – głosi, że pierwiastki równania algebraicznego stopnia wyższego niż 4 nie dają się wyrazić w ogólnej postaci za pomocą czterech działań algebraicznych i pierwiastkowania poprzez współczynniki równania w skończonej liczbie kroków (czyli poprzez tak zwane pierwiastniki).

Mówiąc krótko, nie istnieją ogólne wzory na rozwiązania takiego równania.

Twierdzenie Abela-Ruffiniego nie stwierdza, że równanie stopnia wyższego niż 4 nie ma rozwiązań, a jedynie, że nie ma ogólnej metody na dokładne wyrażenie rozwiązań (każde równanie algebraiczne o współczynnikach zespolonych ma co najmniej jedno rozwiązanie zespolone – zob. Zasadnicze twierdzenie algebry).

Na przykład rozwiązania równania kwadratowego postaci dla wyrażają się wzorami:

Analogiczne, choć bardziej złożone, wzory można podać dla równania stopnia 3 i stopnia 4. Twierdzenie Abela-Ruffiniego mówi, że dla równań stopnia wyższego niż 4 wzory takie nie istnieją.

Jest jasne, że w szczególnych przypadkach rozwiązania dają się znaleźć w postaci dokładnej (przykładem jest równanie ), natomiast w sytuacji ogólnej można obliczać je z dowolną dokładnością za pomocą metod przybliżonych, na przykład metody Newtona-Raphsona.

Przykładem równania stopnia 5, które nie może być rozwiązane w opisany w twierdzeniu sposób (tj. jego pierwiastki nie wyrażają się za pomocą skończonej liczby działań arytmetycznych i pierwiastkowania), jest równanie

Dokładne kryterium, które pozwala stwierdzić, kiedy pierwiastki równania wyrażają się w skończonej postaci przez pierwiastniki podaje teoria Galois: jest tak wtedy i tylko wtedy, gdy grupa Galois tego równania jest rozwiązalna. Ponieważ grupy równań stopnia 2, 3 i 4 zawsze są rozwiązalne, teoria Galois mówi, że odpowiednie typy równań zawsze mają rozwiązania przez pierwiastniki.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in