Zasadnicze twierdzenie algebry, podstawowe twierdzenie algebry[1] – wspólna nazwa dwóch blisko powiązanych twierdzeń algebry i analizy zespolonej:
Drugie twierdzenie jest konsekwencją pierwszego i twierdzenia Bézouta. Oba można też wyrazić w języku algebry abstrakcyjnej: ciało liczb zespolonych jest algebraicznie domknięte, a pierścień wielomianów zespolonych ma jednoznaczność rozkładu – należy do pierścieni Gaussa[potrzebny przypis].
Twierdzenie to udowodnili na przełomie XVIII i XIX wieku Carl Friedrich Gauss i Jean-Robert Argand – ten pierwszy podał większość dowodu, a drugi go uzupełnił[2].