Em cálculo de várias variáveis, um campo vetorial conservativo é um campo vetorial que é o gradiente de um campo escalar. Campos conservativos têm a propriedade de sua integral de linha apresentar independência de caminho, ou seja, a escolha de qualquer caminho entre dois pontos não altera o valor de sua integral de linha. Exemplos de campos conservativos são a gravidade e um campo elétrico fora da ação de campos magnéticos. Esse artigo descreve o caso matematicamente mais simples de campos vetoriais conservativos do e a importância do potencial na descrição de sistemas físicos.
Campos vetoriais conservativos aparecem naturalmente na mecânica: são campos vetoriais que representam as forças de sistemas físicos onde a energia é conservada. Nesses sistemas, o trabalho realizado para mover uma partícula no espaço depende apenas dos pontos final e inicial. Em outras palavras, é possível definir uma energia potencial que seja independente do caminho utilizado.