Espiral de Arquimedes

A Espiral de Arquimedes (também espiral aritmética), obteve seu nome do matemático grego Arquimedes de Siracusa (287 – 212 a.C.) na obra Sobre as Espirais. Define-se como o lugar geométrico de um ponto movendo-se a velocidade constante sobre uma reta que gira sobre um ponto de origem fixo a velocidade angular constante. Em coordenadas polares (r, θ), a espiral de Arquimedes pode ser descrita pela equação seguinte:

sendo a e b números reais. Quando o parâmetro a muda, a espiral gira, ainda que b controla a distância em giros sucessivos.

Três voltas de 360° de um braço do espiral de Arquimedes.

Arquimedes mostrou, por meio dessa espiral, que era possível fazer a trissecção de um ângulo sem muito esforço, resolvendo um problema matemático que intrigava estudiosos da Grécia Antiga. A divisão de um ângulo arbitrário, em três partes iguais, sem utilizar instrumentos de medição, foi um problema que movimentou a matemática antiga.

A Espiral de Arquimedes pode ser encontrada em diversos elementos da natureza, como galáxias, caracois e alguns redemoinhos de vento ou de água.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in