Parte de uma série de artigos sobre: |
a constante matemática π |
---|
3.1415926535897932384626433... |
Utilização |
Propriedades |
Valor |
Pessoas |
História |
Na cultura |
Tópicos relacionados |
O Problema de Basileia é um famoso problema de teoria dos números proposto pela primeira vez por Pietro Mengoli e resolvido por Leonhard Euler em 1735.[1][2] Posto que o problema não foi resolvido pelos matemáticos mais importantes da época, a solução tornou Euler rapidamente conhecido aos vinte e oito anos. Euler generalizou o problema consideravelmente, e suas ideias foram tomadas anos depois por Bernhard Riemann em seu artigo de 1859 Über die Anzahl der Primzahlen unter einer gegebenen Größe, onde definiu sua função zeta e demonstrou suas propriedades básicas. O problema deve seu nome à cidade onde residia Euler (Basileia), cidade onde vivia também a família Bernoulli, que tentou resolver o problema sem êxito.
O problema de Basileia consiste em encontrar a soma exata dos inversos dos quadrados dos inteiros positivos, isto é, a soma exata da série infinita: