O produto categorial é uma generalização categorial do produto cartesiano.
Seja C uma categoria e sejam e dois objetos da categoria C. O produto categorial de e é um objeto , junto a dois morfismos e , tal que para qualquer objeto da categoria e para quaisquer morfismos e existe exatamente um tal que o diagrama da figura ao lado comuta, isto é:
Os morfismos e são chamados projeções. Podemos chamar o objeto junto com as setas e de pré-produto.
Sendo um caso particular do limite em teoria das categorias, produtos (se existem) são únicos a menos de isomorfismo.[1]