Metabolizam

Struktura adenozin trifosfata (ATP), centralnog intermedijera u energijskom metabolizmu

Metabolizam (gr: μεταβολήσμός što znači promena) je biohemijski proces u kome dolazi do modifikacije hemijskih jedinjenja u živim organizmima i ćelijama. Metabolizam se deli na anabolizam odnosno biosintezu (stvaranje) kompleksnih organskih molekula i na katabolizam koji je obrnuti proces od anabolizma, a to je razdvajanje kompleksnih organskih jedinjenja u jednostavnija jedinjenja. Sveukupni biohemijski procesi u jednom organizmu se jednom rečju nazivaju metabolizam. Bez metabolizma mi ne bismo mogli da preživimo.[1]

Metabolizam je set hemijskih transformacija kojima se održava život u ćelijama. Ove reakcije su katalizovane enzimima. One omogućavaju organizmima da rastu i da se reprodukuju, održe svoje strukture, i odgovore na stimulust iz okoline. Reč metabolizam se isto takom može odnositi na sve hemijske reakcije koje se odvijaju u živim organizmima, uključujuću varenje i transport supstanci u i između različith ćelija, u kom slučaju se set reakcija unutar ćelija naziva intermedijarni metabolizam.

Hemijske reakcije metabolizma su organizovane u metaboličke puteve, u kojima se jedna hemikalija transformiše putem serije koraka u drugu hemikaliju, posredstvom sekvence enzima. Enzimi su od presudnog značaja za metabolizam, zato što oni omogućavaju organizmima odvijanje željenih reakcija sa visokom energijom aktivacije koje se ne bi spontano odvijale. To se obično ostvaruje putem sprezanja tih reakcija sa spontanim reakcijama u kojima se otpušta energija. Enzimi deluju kao katalizatori koji omogućavaju reakcijama da brže teku. Enzimi isto tako omogućavaju regulaciju metaboličkih puteva u odgovoru na promene u ćelijskom okruženju ili na signale iz drugih ćelija.

Metabolički sistem datog organizma određuje koje supstance će biti hranljive, a koje će biti otrovne. Na primer, neke prokariote koriste vodonik sulfid kao nutrijent, dok je taj gas otrovan za životinje.[2] Brzina metabolizma, metabolička stopa, utiče na količinu hrane koja je neophodna organizmu, a isto tako utiče i na način na koji organizam dolazi do hrane.

Upadljiva odlika metabolizma je sličnost osnovnih metaboličkih puteva i njihovih komponenti, čak i između veoma različitih vrsta.[3] Na primer, grupa karboksilnih kiselina koje su najbolje poznate kao intermedijeri ciklusa limunske kiseline je prisutna u svim poznatim organizmima, od jednoćelijske bakterije Escherichia coli do ogromnih višećelijskih organizama, kao što su slonovi.[4] Te upadljive sličnosti metaboličkih puteva su verovatno posledica njihove rane pojave tokom evolucione historije, i zadržavanja zvog njihove efikasnosti.[5][6]

  1. Voet D, Voet J (1995). Biochemistry (2 izd.). Wiley. 
  2. Friedrich C (1998). „Physiology and genetics of sulfur-oxidizing bacteria”. Adv Microb Physiol. Advances in Microbial Physiology 39: 235–89. DOI:10.1016/S0065-2911(08)60018-1. ISBN 9780120277391. PMID 9328649. 
  3. Pace NR (January 2001). „The universal nature of biochemistry”. Proc. Natl. Acad. Sci. U.S.A. 98 (3): 805–8. Bibcode 2001PNAS...98..805P. DOI:10.1073/pnas.98.3.805. PMC 33372. PMID 11158550. 
  4. Smith E, Morowitz H (2004). „Universality in intermediary metabolism”. Proc Natl Acad Sci USA 101 (36): 13168–73. Bibcode 2004PNAS..10113168S. DOI:10.1073/pnas.0404922101. PMC 516543. PMID 15340153. 
  5. Ebenhöh O, Heinrich R (2001). „Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems”. Bull Math Biol 63 (1): 21–55. DOI:10.1006/bulm.2000.0197. PMID 11146883. 
  6. Meléndez-Hevia E, Waddell T, Cascante M (1996). „The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution”. J Mol Evol 43 (3): 293–303. DOI:10.1007/BF02338838. PMID 8703096. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy