Den här artikeln behöver fler eller bättre källhänvisningar för att kunna verifieras. (2022-01) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Elliptiska funktioner är matematiska funktioner, definierade på det komplexa talplanet, som är periodiska i två riktningar. Det kan jämföras med vanliga trigonometriska funktioner som sinus och cosinus, vilka är periodiska i en riktning med perioden 2π radianer. Elliptiska funktioner är inverser till elliptiska integraler, som kommer ur problemet att beräkna båglängden på ellipser.
En funktion som är dubbelperiodisk och analytisk utom i sina poler är en elliptisk funktion. Formellt sett är en dubbel-periodisk funktion en funktion som uppfyller följande ekvation:
där a och b då är funktionens perioder.
Teorin för de elliptiska funktionerna är till sin väsentligaste del utvecklad av Niels Henrik Abel, Karl Weierstrass och Carl Gustav Jakob Jacobi.