Integral

Arean under en funktionskurva är ett typiskt exempel på en integral

Integration eller integrering är en typ av matematisk operation på en funktion, där resultatet blir funktionens integral. Integraler används för att beskriva och beräkna geometriska och fysikaliska storheter som längd, area, massa, volym och flöde, där den kan beskrivas som en summa av en variabel.

För en funktion f som är beroende av variabeln x och kontinuerlig på [a,b] beräknas integralen av f på följande vis:

där F är en primitiv funktion till f.

Integrationsteori är ett mycket viktigt område inom matematisk analys och sannolikhetsteori med väntevärden. Den hör även samman med måtteorin där man studerar storleken på mängder, och integrationteorins historia hör i många stycken samman med måtteorins historia. Pionjärerna inom integrationsteorin är Isaac Newton, Gottfried Leibniz, Bernhard Riemann, Henri Lebesgue och Percy Daniell. Newton och Leibniz identifierade integraler med intuitiv kalkyl, integralkalkyl, och kopplade ihop integraler med derivata. Bernard Riemann konstruerade en mer exakt integral, Riemannintegralen, för funktioner i ℝ. Henri Lebesgue utvecklade den revolutionära Lebesgueintegralen som använder måtteori. Percy Daniell definierade en generell integral, Daniellintegralen, som inte behöver måtteoretiska begrepp.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in