Primtalssatsen är ett talteoretiskt resultat som ger en uppskattning av hur tätt primtalen ligger. Om vi betecknar antalet primtal som är mindre än eller lika med x med π(x) säger satsen att
dvs att π(x) är ungefär lika med x/ln(x) för stora x.
Det var Carl Friedrich Gauss som för första gången upptäckte att antalet primtal mindre än är approximativt lika med för stora . Adrien-Marie Legendre hade också upptäckt sambandet 1798. Men det var först 1896 som satsen bevisades av Jacques Hadamard och Charles de la Vallée Poussin (oberoende av varandra).