Den här artikeln behöver fler eller bättre källhänvisningar för att kunna verifieras. Motivering: Den enda källan berör enbart själva formuleringen av hypotesen (2016-09) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Riemannhypotesen är en matematisk förmodan som även kallas Riemanns zeta-hypotes. Den formulerades först av Bernhard Riemann år 1859.[1]
Hypotesen behandlar indirekt primtalens förekomst bland de naturliga talen (de positiva heltalen). Rent konkret handlar det dock om att hitta alla nollställen till Riemanns zetafunktion.[1] Zetafunktionen definieras för komplexa tal s med Re s>1 genom summan
och kan sedan fortsättas analytiskt till en funktion som är analytisk överallt utom för s=1, där den har en enkel pol.[1]
"Triviala" nollställen är de negativa, jämna heltalen (-2, -4, -6 ...). Alla andra till dags dato kända nollställen har realdelen 1/2, och hypotesen påstår att samtliga nollställen antingen är de ovan nämnda reella, negativa talen, eller är ett komplext tal med realdelen 1/2 (dessa lösningar kallas hädanefter för de icketriviala lösningarna).[2] Man vet hittills bland annat att de icke-triviala nollställena måste uppfylla 0 ≤ Re(s) < 1.[1]
Det är fortfarande inte känt huruvida hypotesen är sann eller inte, och problemet räknas till de absolut största inom matematiken idag. Clay Mathematics Institute har utfäst en belöning på en miljon dollar till den som kan strikt visa att hypotesen är antingen korrekt eller felaktig; som ett av de så kallade Millennieproblemen.[1] Problemet fanns även som nummer 8 på David Hilberts lista över 23 olösta problem från år 1900.