Semiprimtal

Semiprimtal (även kallat biprimtal, 2-nästan-primtal eller pq-tal) är inom matematiken ett naturligt tal som är produkten av två (inte nödvändigtvis olika) primtal.

De första semiprimtalen är:

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187, … (talföljd A001358 i OEIS)

Semiprimtal som inte utgör perfekta kvadrater kallas för diskreta semiprimtal eller distinkta semiprimtal.

Sedan januari 2016 är det största kända distinkta semiprimtalet (274207281 − 1) × (257885161 − 1), det vill säga produkten av de två största kända primtalen.

Sedan denna tidpunkt är (274207281 − 1)2 det största kända semiprimtalet.

Om det största kända primtalet är a och det näst största kända primtalet är b, så är a x b det största kända distinkta semiprimtalet och a x a det största kända semiprimtalet.

Semiprimtal har aldrig några sammansatta faktorer än sig själva. Till exempel är talet 26 semiprital eftersom dess enda faktorer är 1, 2, 13, och 26. I själva verket finns det inga tal som är produkten av två primtal som har några sammansatta faktorer.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in