Variationskalkyl behandlar problemet att bestämma det minsta värdet av en funktional E(f) som beror av en funktion f. Genom att välja olika funktioner f fås olika värden på funktionalen E(f). Problemet är att finna den funktion f som ger det minsta värdet hos E(f).
Medan man i vanlig matematisk analys varierar ett tal och söker efter det tal x som ger det minsta eller största värdet hos en given fix funktion g(x), så varierar man i variationskalkyl en funktion, f, för att hitta ett extremvärde.
Ett viktigt problem som går att lösa med hjälp av variationskalkyl är problemet att bestämma det kortaste avståndet E(f) mellan två fixerade punkter där f är en funktion som går genom de fixerade punkterna. En viktig sak att notera är vilken mängd de två punkterna i fråga tillhör:
För att matematiskt formulera variationsproblemet då de fixerade punkterna, och , ligger i planet låter vi vara en funktion som går genom de två punkterna: och Längden E(f) hos funktionens graf ges då av integralen
där betecknar derivatan av funktionen f. Genom att variera funktionen f får vi olika värden på längden E(f). Vi vill se vad som händer med längden för funktionskurvor som ligger nära funktionskurvan f. Ett sätt att göra detta på är att ersätta f med funktionen
där är ett litet positivt tal och en godtyckligt vald funktion som låter sig deriveras obegränsat.