Biotremology

Elephants produce low-frequency rumbles which travel over long distances as seismic waves and are detected by sense organs in the elephant's feet.[1]

Biotremology is the study of production, dispersion and reception of mechanical vibrations by organisms, and their effect on behavior. This involves neurophysiological and anatomical basis of vibration production and detection, and relation of vibrations to the medium they disperse through. Vibrations can represent either signals used in vibrational (seismic) communication or inadvertent cues used, for example, in locating prey (in some cases even both). In almost all known cases, they are transmitted as surface waves along the boundary of a medium, i.e. Rayleigh waves or bending waves.[2][3] While most attention is directed towards the role of vibrations in animal behavior, plants actively respond to sounds and vibrations as well, so this subject is shared with plant bioacoustics.[4] Other groups of organisms (such as nematodes[5]) are also postulated to either actively produce or at least use vibrations to sense their environment, but those are currently far less studied.

Traditionally regarded part of bioacoustics, the discipline has recently begun to actively diverge on its own, because of the many peculiarities of the studied modality compared with sound.[2] Vibrational communication has been recognized as evolutionarily older than sound and much more prevalent, at least among arthropods,[6][7] although the two modalities are closely related and sometimes overlap.[8] While many experimental approaches are shared between the two disciplines, scientists in the field of biotremology often use special equipment, such as laser vibrometers, for detecting faint vibrational emissions by animals and electromagnetic transducers in contact with the substrate for artificial playback experiments.[9]

  1. ^ Günther, R.H.; O'Connell-Rodwell, C.E.; Klemperer, S.L. (2004). "Seismic waves from elephant vocalizations: A possible communication mode?". Geophysical Research Letters. 31 (11): L11602. Bibcode:2004GeoRL..3111602G. doi:10.1029/2004GL019671.
  2. ^ a b Hill, Peggy S.M.; Wessel, Andreas (2016). "Biotremology". Current Biology. 26 (5): R187–R191. doi:10.1016/j.cub.2016.01.054. PMID 26954435.
  3. ^ Virant-Doberlet, Meta; Čokl, Andrej; Zorović, Maja (2006). "Use of Substrate Vibrations for Orientation: From Behaviour to Physiology". In Drosopoulos, Sakis; Claridge, Michael F. (eds.). Insect Sounds and Communication. Boca Raton: CRC Press. pp. 81–98. doi:10.1201/9781420039337.ch5. ISBN 978-0-8493-2060-6.
  4. ^ Gagliano, Monica; Mancuso, Stefano; Robert, Daniel (2012). "Towards understanding plant bioacoustics". Trends in Plant Science. 17 (6): 323–325. doi:10.1016/j.tplants.2012.03.002. PMID 22445066.
  5. ^ Holbrook, Robert I.; Mortimer, Beth (2018). "Vibration sensitivity found in Caenorhabditis elegans". The Journal of Experimental Biology. 221 (15): jeb178947. doi:10.1242/jeb.178947. PMID 29903836.
  6. ^ Cocroft, Reginald B.; Rodríguez, Rafael L. (2005). "The behavioral ecology of insect vibrational communication". BioScience. 55 (4): 323–334. doi:10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2.
  7. ^ Hill, Peggy S.M. (2008). Vibrational Communication in Animals. Harvard University Press. ISBN 9780674027985.
  8. ^ Caldwell, Michael S. (2014). "Interactions Between Airborne Sound and Substrate Vibration in Animal Communication". In Cocroft, Reginald B.; Gogala, Matija; Hill, Peggy S.M.; Wessel, Andreas (eds.). Studying vibrational communication. Animal Signals and Communication. Vol. 3. Springer. pp. 65–92. doi:10.1007/978-3-662-43607-3_6. ISBN 978-3-662-43606-6.
  9. ^ Michelsen, Axel (2014). "Physical Aspects of Vibrational Communication". In Cocroft, Reginald B.; Gogala, Matija; Hill, Peggy S.M.; Wessel, Andreas (eds.). Studying vibrational communication. Animal Signals and Communication. Vol. 3. Springer. pp. 199–213. doi:10.1007/978-3-662-43607-3_11. ISBN 978-3-662-43606-6.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy